진구간 그래프의 서로소인 경로 커버에 대한 조건

Conditions for Disjoint Path Coverability in Proper Interval Graphs

  • 박정흠 (가톨릭대학교 컴퓨터정보공학부)
  • 발행 : 2007.10.15

초록

이 논문에서는 진구간 그래프(proper interval graph)가 각각 일대일, 일대다. 다대다 k-서로소인 경로 커버를 가질 조건을 고찰한다. 진구간 그래프는 $k{\geq}2$인 경우, k-연결되어 있는 경우에만 일대일 k-서로소인 경로 커버를 가지며, k+1-연결되어 있는 경우에만 일대다 k-서로소인 경로 커버를 가짐을 증명하였다. 그리고 $k{\geq}3$일 때 진구간 그래프는 2k-1-연결되어 있는 경우에만 (쌍형) 다대다 k-서로소인 경로 커버를 가진다.

In this Paper, we investigate conditions for proper interval graphs to have k-disjoint path covers of three types each: one-to-one, one-to-many, and many-to-many. It was proved that for $k{\geq}2$, a proper interval graph is one-to-one k-disjoint path coverable if and only if the graph is k-connected, and is one-to-many k-disjoint path coverable if and only if the graph is k+1-connected. For $k{\geq}3$, a Proper interval graph is (paired) many-to-many k-disjoint path coverable if and only if the graph is 2k-1-connected.

키워드

참고문헌

  1. J.-H. Park, 'One-to-one disjoint path covers in recursive circulants,' Journal of KISS 30(12), pp. 691-698, 2003
  2. C.-H. Tsai, J.J.M. Tan, and L.-H. Hsu, 'The super-connected property of recursive circulant graphs,' Inform. Proc. Lett. 91(6), pp. 293-298, 2004 https://doi.org/10.1016/j.ipl.2004.05.013
  3. C.-H. Chang, C.-K. Lin, H.-M. Huang, and L.-H. Hsu, 'The super laceability of the hypercubes,' Inform. Proc. Lett. 92(1), pp. 15-21, 2004 https://doi.org/10.1016/j.ipl.2004.06.006
  4. J.-H. Park, 'One-to-many disjoint path covers in a graph with faulty elements,' in Proc. of the International Computing and Combinatorics Conference COCOON 2004, pp. 392-401, Aug. 2004
  5. J.-H. Park, H.-C. Kim, and H.-S. Lim, 'Many-to-many disjoint path covers in a graph with faulty elements,' in Proc. of the International Symposium on Algorithms and Computation ISAAC 2004, pp. 742-753, Dec. 2004
  6. J.-H. Park, H.-C. Kim, and H.-S. Lim, 'Many-to-many disjoint path covers in hypercube-like interconnection networks with faulty elements,' IEEE Trans. Parallel and Distributed Systems 17(3), pp. 227-240, Mar. 2006 https://doi.org/10.1109/TPDS.2006.37
  7. J.-H. Park, 'Unpaired many-to-many disjoint path covers in hypercube-like interconnection networks,' Journal of KISS 33(10), pp. 789-796, 2006
  8. J.-H. Park, 'Many-to-many disjoint path covers in double loop networks,' Journal of KISS 32(8), pp. 426-431, 2005
  9. A.A. Bertossi, 'Finding hamiltonian circuits in proper interval graphs,' Inform. Proc. Lett. 17, pp. 97-101, 1983 https://doi.org/10.1016/0020-0190(83)90078-9
  10. C. Chen, C.-C. Chang, G.J. Chang, 'Proper interval graphs and the guard problem,' Discrete Mathematics 170, pp. 223-230, 1997 https://doi.org/10.1016/S0012-365X(96)00307-X
  11. F.S. Roberts, 'Indifference graphs,' in F. Harary (ed.), Proof Techniques in Graph Theory, Academic Press, NY, pp. 139-146, 1969
  12. M.C. Golumbic, Algorithmic Graph Theory and Perfect Graphs, Academic Press, Inc. 1980
  13. J.A. Bondy and U.S.R. Murty, Graph Theory with Applications, 5th printing, American Elsevier Publishing Co., Inc., 1976