Detection of Nitrate/Nitrite Bioavailability in Wastewater Using a luxCDABE-Based Klebsiella oxytoca Bioluminescent Bioreporter

  • Abd-El-Haleem, Desouky (Environmental Biotechnology Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), Mubarak City for Scientific Research and Technology Applications, New Burg-Elarab City) ;
  • Ripp, Steven (Center for Environmental Biotechnology, The University of Tennessee) ;
  • Zaki, Sahar (Environmental Biotechnology Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), Mubarak City for Scientific Research and Technology Applications, New Burg-Elarab City) ;
  • Sayler, Gary S. (Center for Environmental Biotechnology, The University of Tennessee)
  • Published : 2007.08.30

Abstract

In the present study, we have constructed a bioluminescent bioreporter for the assessment of nitrate/nitrite bioavailability in wastewater. Specifically, an approximately 500-bp DNA fragment containing a nitrate/nitrite-activated nasR-like promoter (regulating expression of genes encoding nitrite reductase in the genus Klebsiella) was fused upstream of the Vibrio fischeri luxCDABE gene cassette in a modified mini-Tn5 vector. Characterization of this strain, designated W6-1, yielded dose-dependent increased bioluminescence coincident with increased nitrate, nitrite, and ammonium added to the growth medium from 1 to 11 ppm. Bioluminescence in response to nitrogen species addition was light dependent up to 10, 7, and 8 ppm with nitrate, nitrite, and ammonium, respectively. This response was linear in the range from 1 to 8 ppm for nitrate ($R^2=0.98$), 1 to 6 ppm for nitrite ($R^2=0.99$), and 1 to 7 ppm for ammonium ($R^2=0.99$). A significant bioluminescent response was also recorded when strain W6-1 was incubated with slurries from aged, nitrate/nitrite contaminated wastewater. Thus, bioreporter strain W6-1 can be used to elucidate factors that constrain the use of nitrate/nitrite in wastewaters.

Keywords

References

  1. Abd-El-Haleem, D. and S. Zaki. 2006. Use of bioluminescent indicator Acinetobacter bacterium for screening and characterization of active antimicrobial agents. J. Microbiol. Biotechnol. 16: 1706-1712
  2. Abd-El-Haleem, D., H. Moawad, E. A. Zaki, and S. Zaki. 2002. Molecular characterization of phenol-degrading bacteria isolated from different Egyptian ecosystems. Microb. Ecol. 43: 217-224 https://doi.org/10.1007/s00248-002-2003-2
  3. Abd-El-Haleem, D., S. Ripp, C. Scott, and G. S. Sayler. 2002. A luxCDABE-based bioluminescent bioreporter for the detection of phenol. J. Ind. Microbiol. Biotechnol. 29: 233-237 https://doi.org/10.1038/sj.jim.7000309
  4. Addiscott, T. M. and N. Benjamin. 2004. Nitrate and human health. Soil Use Manage. 20: 98-104 https://doi.org/10.1079/SUM2004256
  5. Applegate, B. M., S. R. Kehrmeyer, and G. S. Sayler. 1998. A chromosomally based tod-luxCDABE whole-cell reporter for benzene, toluene, ethylbenzene, and xylene (BTEX) sensing. Appl. Environ. Microbiol. 64: 2730-2735
  6. Bachmann, T. 2003. Transforming cyanobacteria into bioreporters of biological relevance. Trends Biotechnol. 21: 247-249 https://doi.org/10.1016/S0167-7799(03)00114-8
  7. Belkin, S. 2003. Microbial whole-cell sensing systems of environmental pollutants. Curr. Opin. Microbiol. 6: 206-212 https://doi.org/10.1016/S1369-5274(03)00059-6
  8. Bird, C. and M. Wyman. 2003. Nitrate/nitrite assimilation system of the marine picoplanktonic cyanobacterium Synechococcus sp. strain WH 8103: Effect of nitrogen source and availability on gene expression. Appl. Environ. Microbiol. 69: 7009-7018 https://doi.org/10.1128/AEM.69.12.7009-7018.2003
  9. Boardman, G. D., S. M. Starbuck, D. B. Hudgins, X. Y. Li, and D. D. Kuhn. 2004. Toxicity of ammonia to three marine fish and three marine invertebrates. Environ. Toxicol. 19: 134-142 https://doi.org/10.1002/tox.20006
  10. Clesceri, L. S., A. E. Greenberg, and A. D. Eaton. 1998. Standard Methods for the Examination of Water and Wastewater, 20th Ed. American Public Health Association, American Water Works Association, and Water Environment Federation, Washington, DC
  11. Dave, G. and E. Nilsson. 2005. Increased reproductive toxicity of landfill leachate after degradation was caused by nitrite. Aquatic Toxicol. 73: 11-30 https://doi.org/10.1016/j.aquatox.2005.02.006
  12. de Lorenzo, V., M. Herrero, J. M. Sanchez, and K. N. Timmis. 1998. Mini-transposons in microbial ecology and environmental biotechnology. FEMS Microbiol. Ecol. 27: 211-224 https://doi.org/10.1111/j.1574-6941.1998.tb00538.x
  13. Durham, K. A., D. Porta, M. R. Twiss, R. M. L. McKay, and G. S. Bullerjahn. 2002. Construction and initial characterization of a luminescent Synechococcus sp. PCC 7942 Fe-dependent bioreporter. FEMS Microbiol. Lett. 209: 215-221 https://doi.org/10.1111/j.1574-6968.2002.tb11134.x
  14. Durham, K. A., D. Porta, R. M. L. McKay, and G. S. Bullerjahn. 2003. Expression of the iron-responsive irpA gene from the cyanobacterium Synechococcus sp. strain PCC 7942. Arch. Microbiol. 179: 131-134 https://doi.org/10.1007/s00203-002-0503-6
  15. Gillor, O., O. Hadas, A. F. Post, and S. Belkin. 2002. Phosphorus bioavailability monitoring by a bioluminescent cyanobacterial sensor strain. J. Phycol. 38: 107-115 https://doi.org/10.1046/j.1529-8817.2002.01069.x
  16. Goss, T. J. and R. A. Bender. 1995. The nitrogen assimilation control protein, NAC, is a DNA binding transcription activator in Klebsiella aerogenes. J. Bacteriol. 177: 3546-3555 https://doi.org/10.1128/jb.177.12.3546-3555.1995
  17. Greer, F. R. and M. Shannon. 2005. Infant methemoglobinemia: The role of dietary nitrate in food and water. Pediatrics 116: 784-786 https://doi.org/10.1542/peds.2005-1497
  18. Ivanikova, N. V., R. M. L. McKay, and G. S. Bullerjahn. 2005. Construction and characterization of a cyanobacterial bioreporter capable of assessing nitrate assimilatory capacity in freshwaters. Limnol. Oceanogr. Meth. 3: 86-93 https://doi.org/10.4319/lom.2005.3.86
  19. Janes, B. K., P. J. Pomposiello, A. Perez-Matos, D. J. Najarian, T. J. Goss, and R. A. Bender. 2001. Growth inhibition caused by overexpression of the structural gene for glutamate dehydrogenase (gdhA) from Klebsiella aerogenes. J. Bacteriol. 183: 2709-2714 https://doi.org/10.1128/JB.183.8.2709-2714.2001
  20. Kim H. M. and J. O. Hao. 1999. Cometabolic degradation of chlorophenols by Acinetobacter species. Water Res. 33: 562-574 https://doi.org/10.1016/S0043-1354(98)00228-0
  21. Lin, J. T. and V. Stewart. 1996. Nitrate and nitrite-mediated transcription antitermination control of nasF (nitrate assimilation) operon expression in Klebsiella pneumoniae M5al. J. Mol. Biol. 256: 423-435 https://doi.org/10.1006/jmbi.1996.0098
  22. Mbeunkui, F., C. Richaud, A. L. Etienne, R. D. Schmid, and T. T. Bachmann. 2002. Bioavailable nitrate detection in water by an immobilized luminescent cyanobacterial reporter strain. Appl. Microbiol. Biotechnol. 60: 306-312 https://doi.org/10.1007/s00253-002-1139-9
  23. Merrick, M. J. and R. A. Edwards. 1995. Nitrogen control in bacteria. Microbiol. Rev. 59: 604-622
  24. Mitchell, R. J., J. M. Ahn, and M. B. Gu. 2005. Comparison of Photorhabdus luminescens and Vibrio fischeri lux fusions to study gene expression patterns. J. Microbiol. Biotechnol. 15: 48-54
  25. Nivens, D. E., T. E. McKnight, S. A. Moser, S. J. Osbourn, M. L. Simpson, and G. S. Sayler. 2004. Bioluminescent bioreporter integrated circuits: Potentially small, rugged and inexpensive whole-cell biosensors for remote environmental monitoring. J. Appl. Microbiol. 96: 33-46 https://doi.org/10.1046/j.1365-2672.2003.02114.x
  26. Philips, S. and W. Verstraete. 2000. Inhibition of activated sludge by nitrite in the presence of proteins or amino acids. Environ. Technol. 21: 1119-1125 https://doi.org/10.1080/09593330.2000.9618998
  27. Pomposiello, P. J. and R. A. Bender. 1995. Activation of the Escherichia coli lacZ promoter by the Klebsiella aerogenes nitrogen assimilation control protein (NAC), a LysR family transcription factor. J. Bacteriol. 177: 4820-4824 https://doi.org/10.1128/jb.177.16.4820-4824.1995
  28. Prest, A. G., M. K. Winson, J. R. M. Hammond, and G. S. A. B. Stewart. 1997. The construction and application of a luxbased nitrate biosensor. Lett. Appl. Microbiol. 24: 355-360 https://doi.org/10.1046/j.1472-765X.1997.00064.x
  29. Robertson, L. A. and J. G. Kuenen. 1988. Heterotrophic nitrification in Thiosphaera pantotropha: Oxygen uptake and enzyme studies. J. Gen. Microbiol. 134: 857-863
  30. Salvato, J. A., N. L. Nemerow, and F. J. Agardy. 2003. Environmental Engineering, 5th Ed. John Wiley & Sons, Hoboken, NJ
  31. USEPA. 1993. Nitrogen Control Manual, vol. EPA 625/R- 93/010. U.S. Environmental Protection Agency, Office of Research and Development, Cincinnati, OH
  32. Wrage, N., G. L. Velthof, M. L. van Beusichem, and O. Oenema. 2001. Role of nitrifier denitrification in the production of nitrous oxide. Soil Biol. Biochem. 33: 1723-1732 https://doi.org/10.1016/S0038-0717(01)00096-7
  33. Wu, S. Q. T., W. H. Chai, J. T. Lin, and V. Stewart. 1999. General nitrogen regulation of nitrate assimilation regulatory gene nasR expression in Klebsiella oxytoca M5a1. J. Bacteriol. 181: 7274-7284
  34. Yang, C. Y., H. F. Chiu, J. F. Chiu, M. F. Cheng, and W. Y. Kao. 1997. Gastric cancer mortality and drinking water qualities in Taiwan. Arch. Environ. Contam. Toxicol. 33: 336-340 https://doi.org/10.1007/s002449900262