색상변화를 갖는 객체추적 알고리즘

An Algorithm for Color Object Tracking

  • 발행 : 2007.07.30

초록

기존의 색상 기반의 Mean Shift 알고리즘을 이용한 객체추적 알고리즘은 초기 색상 정보가 사라질 경우 정확한 객체추적을 수행할 수 없다. 본 논문은 객체의 색상이 변할 때 색상 정보를 변경하여 정확히 추적하는 알고리즘을 제안한다. 제안 알고리즘은 현재의 위치를 중심으로 다음 객체 위치에 해당하는 밀도가 가장 높은 위치를 Mean Shift알고리즘으로 구하고, 바꿔 색상 정보를 변경하는 반복적인 기법을 사용한다. 이를 통해 처음 설정한 객체의 색상이 바뀌거나 사라지더라도 정확한 객체추적을 할 수 있게 되었다. 본 논문에서는 제안 알고리즘을 구현하고, 실험 결과로 성능을 입증한다.

Conventional color-based object tracking using Mean Shift algorithm does not provide appropriate result when initial color distribution disappears. In this paper we propose a tracking algorithm that updates the object color sample when the color is changing. Mean Shift analysis is first used to derive the object candidate with maximum increase in density direction from current position. The color information of object is updated iteratively. The proposed algorithm achieves accurate tracking of objects when initial color samples are changed and finally disappeared. The validity of the effective approach is illustrated by the experimental results.

키워드