한국멀티미디어학회논문지 (Journal of Korea Multimedia Society)
- 제10권8호
- /
- Pages.1068-1077
- /
- 2007
- /
- 1229-7771(pISSN)
- /
- 2384-0102(eISSN)
ART2 기반 RBF 네트워크를 이용한 콘크리트 슬래브 표면의 균열 추출 및 인식
Extraction and Recognition of Concrete Slab Surface Cracks using ART2-based RBF Network
초록
본 논문에서는 콘크리트 표면 품질이 좋은 영상뿐만 아니라, 기존의 영상처리 기법에서 다루지 않았던 표면 품질이 좋지 않은 영상에 대해서도 효율적으로 균열을 추출하고, 추출된 균열의 특징인 길이, 방향, 폭을 자동으로 계산한 후, ART2 기반 RBF 네트워크를 적용하여 균열의 방향성(
This paper proposes a method that extracts characteristics of cracks such as length, thickness and direction from a concrete slab surface image with image processing techniques. These techniques extract the cracks from the concrete surface image in variable conditions including bad image conditions) using the ART2-based RBF network to recognize the dominant directions -45 degree, 45 degree, horizontal and vertical) of the extracted cracks from the automatically calculated specifications like the lengths, directions and widths of the cracks. Our proposed extraction algorithms and analysis of the concrete cracks used a Robert operation to emphasize the cracks, and a Multiple operation to increase the difference in brightness between the cracks and background. After these treatments, the cracks can be extracted from the image by using an iterated binarization technique. Noise reduction techniques are used three separate times on this binarized image, and the specifications of the cracks are extracted form this noiseless image. The dominant directions can be recognized by using the ART2-based RBF network. In this method, the ART2 is used between the input layer and the middle layer to learn, and the Delta learning method is used between the middle layer and the output layer. The experiments using real concrete images showed that the cracks were effectively extracted, and the Proposed ART2-based RBF network effectively recognized the directions of the extracted cracks.
키워드