A Study on Gesture Recognition Using Principal Factor Analysis

주 인자 분석을 이용한 제스처 인식에 관한 연구

  • 이용재 ((주)삼성테크윈 정밀기기연구소) ;
  • 이칠우 (전남대학교 전자컴퓨터공학부)
  • Published : 2007.08.30

Abstract

In this paper, we describe a method that can recognize gestures by obtaining motion features information with principal factor analysis from sequential gesture images. In the algorithm, firstly, a two dimensional silhouette region including human gesture is segmented and then geometric features are extracted from it. Here, global features information which is selected as some meaningful key feature effectively expressing gestures with principal factor analysis is used. Obtained motion history information representing time variation of gestures from extracted feature construct one gesture subspace. Finally, projected model feature value into the gesture space is transformed as specific state symbols by grouping algorithm to be use as input symbols of HMM and input gesture is recognized as one of the model gesture with high probability. Proposed method has achieved higher recognition rate than others using only shape information of human body as in an appearance-based method or extracting features intuitively from complicated gestures, because this algorithm constructs gesture models with feature factors that have high contribution rate using principal factor analysis.

본 논문에서는 연속적인 제스처 영상으로 부터 주 인자 분석을 통해 얻어진 동작 특징 정보를 이용하여 제스처를 인식하는 방법에 대해 기술한다. 제안된 방법은 먼저, 인간의 신체 영상이 포함된 연속적인 입력영상에서 2차원 실루엣 제스처 영역을 분할한 다음 전역특징정보와 지역특징정보를 추출한다. 여기서 전역특징정보는 요인 분석을 통하여 제스처를 효과적으로 표현하는 의미 있는 소수의 핵심 특징을 선택하여 이용한다. 추출 된 특징정보로 부터 제스처의 시간 변화를 나타내는 특징히스토리정보를 얻어 저 차원 제스처공간을 구성한다. 마지막으로 제스처 공간상에 투영된 모델 특징 값은 은닉마르코프 모델의 입력 기호로 이용되기 위해 군집화 알고리즘을 통해 특정한 상태 기호로 구성되며 임의의 입력 동작은 확률 값이 가장 높은 해당 제스처 모델로 인식된다. 주 인자 분석으로부터 제스처에 기여도가 높은 특징인자로 모델을 구성하기 때문에 외관기반방법에서 몸의 형상 정보만을 특징 값으로 이용하거나 직관적인 방법으로 특징을 추출하는 방법보다 복잡한 동작에서 비교적 우수한 인식률을 나타낸다.

Keywords