DOI QR코드

DOI QR Code

새로운 레진 단량체가 복합레진수복물의 미세변연누출에 미치는 영향

EFFECT OF A NEW RESIN MONOMER ON THE MICROLEAKAGE OF COMPOSITE RESIN RESTORATIONS

  • 배지현 (분당 서울대학교 병원 치과보존과) ;
  • 김영균 (분당 서울대학교 병원 구강악안면외과) ;
  • 윤필영 (분당 서울대학교 병원 구강악안면외과) ;
  • 이미애 (서울대학교 치과대학 치과보존학교실) ;
  • 조병훈 (서울대학교 치학연구소)
  • Bae, J.H. (Department of Conservative Dentistry, Seoul National University Bundang Hospital) ;
  • Kim, Y.K. (Department of Oral Maxilofacial Surgery, Seoul National University Bundang Hospital) ;
  • Yoon, P.Y. (Department of Oral Maxilofacial Surgery, Seoul National University Bundang Hospital) ;
  • Lee, M.A. (Department of Conservative Dentistry, School of Dentistry, Seoul National University) ;
  • Cho, B.H. (Dental Research Institute, Seoul National University)
  • 발행 : 2007.09.29

초록

본 연구는 물성의 단점이 많은 희석재인 TEGDMA의 사용을 줄이기 위해, Bis-GMA의 유도체로서 중합수축이 적고 점도가 낮은 새로운 단량체인 methoxlyated Bis-GMA (Bis-M-GMA)를 첨가한 복합레진의 법랑질과 상아질 변연에서의 미세누출을 비교하였다. 40개의 발거된 상하악 소구치의 협면과 설면에 $2\;mm\;{\times}\;2\;mm\;{\times}\;2\;mm$ 와동을 형성하여 4개 군으로 분류하였다. Clearfil SE bond와 복합레진을 이용하여 와동을 수복하였다. EX1군은 실험용 복합레진 1 (Bis-M-GMA/TEGDMA = 95/5wt% ,40 nm 나노필러 함유), EX2군은 실험용 복합레진 2 (Bis-M-GMA/TEGDMA = 95/5wt%, 20 nm 나노필러 함유), EX3군은 실험용 복합레진 3 (Bis-GMA/TEGDMA = 70/30wt%, 40 nm 나노필러 함유), Z250군은 Filtek 2250으로 각각 와동을 수복하였다. 모든 시편은 실온의 실온의 생리식염수에서 7일간 보관한 후, $5^{\circ}C$$55^{\circ}C$ 의 수조에서 500회의 열순환을 실시하고, 2% methylene blue염색 용액에 24시간 담근 후, 협설측으로 치아 장축에 평행하게 절단하고 광학입체현미경하에서 각 수복물의 법랑질과 상아질 변연부의 색소침투 정도를 관찰하여 미세누출점수로 기록한 후 각 군의 유의성을 검증하였다. 법랑질 변연이 상아질 변연보다 유의성있게 낮은 미세변연누출을 보였다 (p = 0.007). 각 변연에서 EX1, EX2보다 EX3, Z250군의 염색침투도가 증가하는 경향을 보였지만 통계적으로 유의성 있는 차이를 보이지는 않았다 (p > 0.05). 점도가 낮은 새로운 레진단량체인 Bis-M-GMA는 기존의 단량체인 Bis-GMA의 대체재로 고려될 수 있다.

The purpose of this study was to evaluate the effect of a new resin monomer on the microleakage of composite resin restorations. By adding new methoxylated Bis-GMA (Bis-M-GMA, 2,2-bis[4-(2-methoxy-3-methacryloyloxy propoxy) phenyl] propane) having low viscosity, the content of TEGDMA which has adverse effects on polymerization shrinkage might be decreased. As a result, microleakage might be improved. $2\;mm\;{\times}\;2\;mm\;{\times}\;2\;mm$ cavities with occlusal margins in enamel and gingival margins in dentin were prepared on buccal and lingual surfaces of 40 extracted human premolars. Prepared teeth were randomly divided into four groups and restored with Clearfil SE bond (Kuraray, Japan) and one of experimental composite resins; EX1, Experimental composite resin1 (Bis-M-GMA/TEGDMA = 95/5 wt%, 40 mm nanofillers); EX2, Experimental composite resin2 (Bis-M-GMA/TEGDMA = 95/5 wt%, 20 mm nanofillers); EX3, Experimental composite resin3 (Bis-GMA/TEGDMA = 70/30 wt%, 40 nm nanofillers); and Filtek Z250 (3M ESPE, USA) was filed as a control group. The restored teeth were thermocycled, and immersed in 2% methylene blue solution for 24 hours. The teeth were sectioned buccolingually with a low speed diamond saw and evaluated for microleakage under stereomicroscope. The data were statistically analyzed by Pearson Chi-Square test and Fisher Exact test (p = 0.05). The microleakage scores seen at the enamel margin were significantly lower than those of dentin margin (p = 0.007). There were no significant differences among the composite resins in the microleakage scores within each margin (p > 0.05). Bis-M-GMA, a new resin monomer having low viscosity, might in part replace high viscous Bis-CMA and might improve the quality of composite resin.

키워드

참고문헌

  1. Bowen RL. Adhesive bonding of various materials to hard tooth tissues. II. Bonding to dentin promoted by a surface-active comonomer. J Dent Res 1965;44:895-902 https://doi.org/10.1177/00220345650440052401
  2. Wieczkowski G, Joynt RB, Davis EL, Yu XY, Cleary K. Leakage patterns associated with glass-ionomer based resin restorations. Oper Dent 1992: 17 :21-25
  3. Cho BH, Dickens SH, Bae JH. Chang CG, Son HH, Urn CM. Effect of interfacial bond quality on the direction of polymerization shrinkage flow in resin composite restorations. Oper Dent 2002 :27 :297-304
  4. Aguiar FHB, Santos AJS, Groppo FC, Lovadino JR. Quqntititive evaluation of marginal leakage of two resin composite restorations using two filling techniques. Oper Dent 2002:27:475-479
  5. Alani AH, Toh CG. Detection of microleakage around dental restorations: a review. Oper Dent 1997 :22: 173-185
  6. Going RE. Microleakage around dental restorations: a summarizing review. J Amer Dent Asso 1972: 84: 1349-1357 https://doi.org/10.14219/jada.archive.1972.0226
  7. Hanning M, Fu B. Effect of air abrasion and resin composite on microleakage of class V restoration bonded with self etching primers. J Adhes Dent 2001: 3:265-272
  8. Davidson CL, AJ Feilzer. Polymerization shrinkage and polymerization shrinkage stress in polymer-based restorations. J Dent 1997:25:435-440 https://doi.org/10.1016/S0300-5712(96)00063-2
  9. Thompson VP, Williams EF, Bailey WJ. Dental resins with reduced shrinkage during hardening. J Dent Res 1979:58:1522-1532 https://doi.org/10.1177/00220345790580051701
  10. Stansbury JW. Synthesis and evaluation of new oxaspiro monomers for doulble ring-opening polymerization. J Dent Res 1992:71:1408-1412 https://doi.org/10.1177/00220345920710070901
  11. Moon EJ, Lee JY, Kim CK, Cho BH. Dental restorative composi tes containing 2, 2-bis-[4- (2-hydroxy-3-methacryloyloxy propoxy) phenyl] propane derivatives and spiro orthocarbonates. J Biomed Mater Res Part B 2005:73B:338-346 https://doi.org/10.1002/jbm.b.30222
  12. Kalachandra S, Sankarapandian M, Shobha HK, Taylor DF, McGrath JE. Influence of hydrogen bonding on properties of Bis-GMA analogs. J Mater Sci Mater Med 1997:8:283-286 https://doi.org/10.1023/A:1018508227774
  13. Kim Y, Kim CK, Cho BH, Son HH, Um CM, Kim OY. A new resin matrix for dental composite having low volumetric shrinkage. J Biomed Meter Res Part B 2004:70B:82-90 https://doi.org/10.1002/jbm.b.30023
  14. Kim JW, Kim LU, Kim CK, Cho BH, Kim OY. Characteristics of novel dental composites containing 2. 2-bis (4-(2-methoxy-3-methacryloxy-propoxy) phenyll propane as a base resin. Biomacromolecules 2006 :7: 154-160 https://doi.org/10.1021/bm050491l
  15. Kim LU, Kim JW, Kim CH. Effect of molecular structure of the resins on the volumetric shrinkage and the mechanical strength of dental restorative composites. Biomacromolecules 2006: 7: 2680-2687 https://doi.org/10.1021/bm060453h
  16. Parakki A, Tallury P, Mondelli RFL. Influence of additives on the properties of Bis-GMA/Bis-GMA analog comonomers and corresponding copolymers. Dent Mater 2006 (E-pub ahead of print)
  17. Anseth KS, Newman SM, Bowman CN. Polymeric dental composites: properties and reaction behavior of multimethacrylate dental restorations. Adv Polym Sci 1995: 122: 177-217
  18. Braden M. The formulation of composite filling materials. Oper Dent 1978:3:97-102
  19. Dickens SH, Cho BH. Interpretation of bond failure through conversion and residual solvent measurements and Weibull analyses of flexural and microtensile bond strengths of bonding agents. Dent Mater 2005 :21: 354-364 https://doi.org/10.1016/j.dental.2004.05.007
  20. Sakaguchi RL, Peters MCRB, Nelson SR, Douglas WH, Poort HW. Effects of polymerization contraction in composite restorations. J Dent 1992:20:178-182 https://doi.org/10.1016/0300-5712(92)90133-W
  21. Bausch JR, Lange KD, Davidson CL, Peters A, de Gee AJ. Clinical significance of polymerization shrinkage of composite resins. J Prasthet Dent 1982:48:59-67 https://doi.org/10.1016/0022-3913(82)90048-8
  22. Goldman M. Polymerization shrinkage of resin-based restorative materials. Aust Dent J 1983:28:156-161 https://doi.org/10.1111/j.1834-7819.1983.tb05272.x
  23. Kim JJ, Moon HJ, Lim BS, Lee YK, Rhee SH, Yang HC. The effect of nanofiller on the opacity of experimental composites. J Biomed Meter Res Part B 2007: 80B: 332-338 https://doi.org/10.1002/jbm.b.30601
  24. Kim IS, Min KS, Shin DH. Microleakage of various composite resin systems. J Kor Acad Cons Dent 2003: 28:127-133 https://doi.org/10.5395/JKACD.2003.28.2.127
  25. Kang SH, Kim OY, Oh MH, Cho BH, Um CM, Kwon HC, Son HH. Microleakage of microfill and flowable composite resins in class V cavity after load cycling. J Kor Acad Cons Dent 2002:27:142-149 https://doi.org/10.5395/JKACD.2002.27.2.142
  26. Barnes DM, McDonald NJ, ThomsonVP, Blank LW, Shires PJ. Microleakage in facial and lingual class 5 composite restorations: A comparision. Oper Dent 1994: 19: 133-137
  27. Gordon M, Plasschaert AJM, Saiku JM, Pelzner RB. Microleakage of posterior composite resin materials and an experimental urethane restorative material tested in vitro above and below the cementaoenamel junction. Quint Int 1986:17:11-15
  28. Fayyad MA, Shortall AC. Microleakage of dentin-bonded posterior composite restoration. J Dent 1987:15:67-72 https://doi.org/10.1016/0300-5712(87)90002-9
  29. Lee IB, Lee JH, Cho BH, Son HH, Lee ST, Urn CM. Rheological properties of resin composites according to the change of monomer and filler compositions. J Kor Acad Cons Dent 2004:29:520-531 https://doi.org/10.5395/JKACD.2004.29.6.520

피인용 문헌

  1. Surface roughness of experimental composite resins using confocal laser scanning microscope vol.33, pp.1, 2008, https://doi.org/10.5395/JKACD.2008.33.1.001