DOI QR코드

DOI QR Code

레진계 근관충전실러의 방사선 불투과성 및 세포 독성에 대한 평가

Evaluation of the radiopacity and cytotoxicity of resinous root canal sealers

  • 김창규 (단국대학교 치과대학 치과보존학교실) ;
  • 류현욱 (원광대학교 치과대학 치과보존학교실) ;
  • 장훈상 (원광대학교 치과대학 치과보존학교실) ;
  • 이병도 (원광대학교 구강악안면 방사선학교실) ;
  • 민경산 (원광대학교 치과대학 치과보존학교실) ;
  • 홍찬의 (단국대학교 치과대학 치과보존학교실)
  • Kim, Chang-Kyu (Department of Conservative Dentistry, College of Dentistry, Dankook University) ;
  • Ryu, Hyun-Wook (Department of Conservative Dentistry, College of Dentistry, Wonkwang University) ;
  • Chang, Hoon-Sang (Department of Conservative Dentistry, College of Dentistry, Wonkwang University) ;
  • Lee, Byung-Do (Department of Oral and Maxillofacial Radiology, College of Dentistry, Wonkwang University) ;
  • Min, Kyung-San (Department of Conservative Dentistry, College of Dentistry, Wonkwang University) ;
  • Hong, Chan-Ui (Department of Conservative Dentistry, College of Dentistry, Dankook University)
  • 발행 : 2007.09.29

초록

본 연구의 목적은 세 가지 레진계 근관충전실러 (AH 26, EZ fill, AD Seal), 산화아연 유지놀계 근관충전실러(ZOB Seal) 그리고 수산화칼슘계 근관충전실러 (Sealapex)의 방사선 불투과성 및 세포독성을 평가한 것이다. 각 실러를 제조회사의 지시대로 혼합하여 직경 10 mm, 두께 1 mm로 시편을 제작한 후 ISO 6876/2001의 규격에 따라 교합필름을 이용하여 알루미늄 스텝웨지와 함께 방사선 촬영을 시행하였다. 방사선 사진을 디지털화하여 컴퓨터에 저장한 후 Scion image 프로그램을 이용하여 각 단계의 알루미늄 스텝웨지의 두께와 비교하였다. 각 재료의 세포 독성은 불멸화된 인간 치주인대세포 (immortalized human periodontal ligament cell, IPDL)에서 MTT 분석법을 이용하여 시행하였다. EZ fill이 가장 높은 방사선 불투과성을 나타내었고 Sealapex가 가장 낮은 방사선 불투과성을 나타내었다 (p < 0.05). AH 26, AD Seal, ZOB Seal은 중등도의 방사선 불투과성을 나타내었다. Sealapex를 제외한 모든 평가된 재료는 ISO 규격에 부합하는 방사선 불투과성을 보였다. 레진계 실러의 세포독성은 모든 실험 시간대에 걸쳐 다른 계통의 실러에 비해 낮게 나타났다 (p < 0.05) 아울러, EZ fill은 24및 48시간대에서는 AD Seal에 비해, 72 시간대에서는 다른 두 레진계 실러에 비해 높은 세포독성을 보였다. 그러나 레진계 실러에서 방사선 불투과성의 정도와 세포독성과의 관련성은 없었다 (p > 0.05). 이 실험 결과로 볼 때 레진계 실러는 다른 계통의 실러에 비해 방사선 불투과성 면에서 장점을 가지며 생체적합성면에서 우수하다고 사료된다.

The aim of this study was to evaluate the radiopacity and cytotoxicity of three resin-based (AH 26, EZ fill and AD Seal), a zinc oxide-eugenol-based (ZOB Seal), and a calcium hydroxide-based (Sealapex) root canal sealers. Specimens, 10 mm in diameter and 1 mm in thickness, were radiographed simultaneously with an aluminum step wedge using occlusal films, according to ISO 6876/2001 standards. Radiographs were digitized, and the radiopacity of sealers was compared to the different thicknesses of the aluminum step wedge, using the Scion image software. Using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, the cytotoxicity of each material was determined in immortalized human periodontal ligament (IPDL) cells. The results demonstrated that EZ fill was the most radiopaque sealer, while Sealapex was the least radiopaque (p < 0.05). AH 26, AD Seal and ZOB Seal presented intermediate radiopacity values. All the materials evaluated, except for Sealapex, presented the minimum radiopacity required by ISO standards. The cell viabilities of resin-based root canal sealers were statistically higher than that of other type of root canal sealers through the all experimental time. Further, EZ fill showed statistically lower cell viability in 24 and 48 hours compared to AD Seal and in 72 hours compared to all other resin-based root canal sealers. However, there was no correlation between the radiopacity and cytotoxicity of three resin-based root canals sealers (p > 0.05). These results indicate that resin-based root canal sealer is more biocompatible and has advantage in terms of radiopacity.

키워드

참고문헌

  1. Beyer-Olsen EM, Orstavik D. Radiopacity of root canal sealers. Oral Surg Oral Med Oral Pathol 51: 320-8, 1981 https://doi.org/10.1016/0030-4220(81)90062-1
  2. Katz A, Kaffe I, Littner M, Tagger M, Tamse A. Densitometric measurement of radiopacity of guttapercha cones and root dentin. J Endod 16:211-3, 1990 https://doi.org/10.1016/S0099-2399(06)81671-7
  3. McComb D. Smith DC. Comparison of physical properties of polycarboxylate-based and conventional root canal sealers. J Endod 2:228-35, 1976 https://doi.org/10.1016/S0099-2399(76)80162-8
  4. Imai Y. Komabayashi T. Properties of a new injectable type of root canal filling resin and adhesiveness to dentin. J Endod 29:20-3, 2003 https://doi.org/10.1097/00004770-200301000-00006
  5. Laghios CD, Benson BW, Gutmann JL, Cutler CW. Comparative radiopacity of tetracalcium phosphate and other root-end filling materials. Int Endod J 33:311-5, 2000 https://doi.org/10.1046/j.1365-2591.2000.00281.x
  6. Higginbotham TL. A comparative study of physical properties of five commonly used root canal sealers. Oral Surg Oral Med Oral Pathol 24:89-101, 1967 https://doi.org/10.1016/0030-4220(67)90295-2
  7. Eliasson ST, Haasken B. Radiopacity of impression maerials. Oral Surg Oral Med Oral Pathol 47:485-91, 1979 https://doi.org/10.1016/0030-4220(79)90136-1
  8. Tai KW, Huang FM, Chang YC. Cytotoxic evaluation of root canal filling materials on primary human oral fibroblast cultures and a permanent hamster cell line. J Endod 27:571-3, 2001 https://doi.org/10.1097/00004770-200109000-00004
  9. de Oliveira Mendes ST, Ribeiro Sobrinho AP, de Carvalho AT, de Souza Cortes MI, Vieira LQ. Invitro evaluation of the cytotoxicity of two root canal sealers on macrophage activity. J Endod 29:95-9, 2003 https://doi.org/10.1097/00004770-200302000-00002
  10. Geusten W, Leyhausen. Biological aspects of root canal filling materials-histocompatibility, cytotoxicity and mutagenicity. Clin Oral In vest 1: 5-11, 1997 https://doi.org/10.1007/s007840050002
  11. Cox ST, Hembree JH. McKnight JP. The bactericidal potential of various endodontic materials for primary teeth. Oral Surg Oral Med Oral Pathol 45:947-54, 1978 https://doi.org/10.1016/S0030-4220(78)80017-6
  12. Mittal M, Chandra S. Comparative tissue toxicity evaluation of four endodontic sealers. J Endod 21 :622-4. 1995 https://doi.org/10.1016/S0099-2399(06)81116-7
  13. Spangberg LSW, Barbosa SV, Lavigne GD. AH 26 release formaldehyde. J Endod 19:596-8. 1994 https://doi.org/10.1016/S0099-2399(06)80272-4
  14. Limkangwalmongkol S, Abbott PV, Sandler AB. Apical dye penetration with four root canal sealers and guttapercha using longitudinal sectioning. J Endod 18: 535, 1992
  15. Azar NG, Heidari M, Bahrami ZS, Shokri F. In vitro cytotoxicity of a new epoxy resin root canal sealer. J Endod 26:462-5, 2000 https://doi.org/10.1097/00004770-200008000-00008
  16. Camps J, About I. Cytotoxic testing of endodontic sealers: a new method. J Endod 29:583-6, 2003 https://doi.org/10.1097/00004770-200309000-00010
  17. Pi SH, Lee SK, Hwang YS, Choi MG, Lee SK, Kim EC. Differential expression of periodontal ligament-specific markers and osteogenic differentiation in human papilloma virus 16-immortalized human gingival fibroblasts and periodontal ligament cells. J Perio Res 42: 104-13, 2007 https://doi.org/10.1111/j.1600-0765.2006.00921.x
  18. Watts DC, McCabe JF. Aluminum radiopacity standards for dentistry: an international survey. J Dent 27:73-8, 1999 https://doi.org/10.1016/S0300-5712(98)00025-6
  19. Baksi Akdeniz BG, Eyuboglu TF, Sen BH, Erdilek N. The effect of three different sealers on the radiopacity of root fillings in simulated canals. Oral Surg Oral Med Oral Pathol Oral Radial Endod 103:138-41. 2007 https://doi.org/10.1016/j.tripleo.2005.11.032
  20. Aoyagi Y, Takahashi H, Iwasaki N, Honda E, Kurabayashi T. Radiopacity of experimental composite resins containing radiopaque materials. Dent Mater J 24:315-20. 2005 https://doi.org/10.4012/dmj.24.315
  21. Kuga MC, Moraes IG, Berbert A. Capacidade seladora do cimento Seal apex puro ou acrescido de iodofomio. Rev Odontol USP 2: 149-42. 1988
  22. Spangberg L, Langeland K. Biologic effect of dental materials. 1. Toxicity of root canal filling materials on HeLa cells in vitro. Oral Surg 35 :402-14. 1973 https://doi.org/10.1016/0030-4220(73)90078-9
  23. Munaco F. Miller W. Mona E. A study of long-term toxicity of endodontic materials with use of an in vitro model. J Endod 4:151-7, 1978 https://doi.org/10.1016/S0099-2399(78)80131-9
  24. Kettering JD, Torabinejad M. Cytotoxicity of root canal sealers: a study using HeLa cells and fibroblasts. Int Endod J 17:60-6, 1984 https://doi.org/10.1111/j.1365-2591.1984.tb00382.x
  25. Yesilsoy C, Feigal RJ. Effect of endodontic materials on cell viability across standard pore size filters. J Endod 11:401-7, 1985 https://doi.org/10.1016/S0099-2399(85)80029-7
  26. Matsumoto K, Inoue K, Matsumoto A. The effect of newly developed root canal sealers on rat pulp cells in primary culture. J Endod 15:60-7, 1989 https://doi.org/10.1016/S0099-2399(89)80109-8
  27. Lindqvist L, Otteskog P. Eugenol: liberation from dental materials and effect on human diploid fibroblast cells. Scand J Dent Res 89:552-6, 1981
  28. Hume VR. Effect of eugenol of respiration and division in human pulp, mouse fibroblasts, and liver cells in vitro. J Dent Res 63: 1262-5. 1984 https://doi.org/10.1177/00220345840630110101
  29. Wilson AD, Batchelor RF. Zinc oxide-eugenol cements: IT. Study of erosion and disintegration. J Dent Res 49:593-8, 1970 https://doi.org/10.1177/00220345700490032201
  30. Maseki T, Nakata K, Kohsaka T, Kobayashi F, Hirano S, Nakamura H. Lack of correlation between the amount of eugenol released from zinc oxide-eugenol sealer and cytotoxicity of the sealer. J Endod 17: 76-9, 1991 https://doi.org/10.1016/S0099-2399(06)81612-2
  31. Valle FG, Taintor JF, Marsh CL. The effect of varying Iiquid-to-powder ratio to zinc oxide and eugenol of rat pulpal respiration. J Endod 6:400-4, 1980 https://doi.org/10.1016/S0099-2399(80)80215-9
  32. Koulaouzidou EA, Papazisis KT, Economides NA, Beltes P, Kortsaris AH. Antiproliferative effect of mineraI trioxide aggregate. zinc oxide-eugenol cement, and glass-ionomer cement against three fibroblastic cell lines. J Endod 31:44-6, 2005 https://doi.org/10.1097/01.DON.0000132302.03725.50
  33. Schafer E, Zandbiglari T. Solubility of root-canal sealers in water and artificial saliva. Int Endod J 36; 6609, 2003

피인용 문헌

  1. A comparative study on radiopacity of canal filling and retrograde root-end filling materials vol.33, pp.2, 2008, https://doi.org/10.5395/JKACD.2008.33.2.107
  2. A comparative study on radiopacity of root canal sealers vol.34, pp.1, 2009, https://doi.org/10.5395/JKACD.2009.34.1.061
  3. Evaluation of radiopacity and discriminability of various fiber reinforced composite posts vol.35, pp.3, 2010, https://doi.org/10.5395/JKACD.2010.35.3.188
  4. study vol.38, pp.4, 2013, https://doi.org/10.5395/rde.2013.38.4.204
  5. study vol.39, pp.1, 2014, https://doi.org/10.5395/rde.2014.39.1.17