Comparison of Antiplatelet Activities of Green Tea Catechins

  • Cho, Mi-Ra (College of Pharmacy, Research Center for Bioresource and Health, Chungbuk National University) ;
  • Jin, Yong-Ri (Research Institute of Veterinary Medicine, Chungbuk National University) ;
  • Lee, Jung-Jin (College of Pharmacy, Research Center for Bioresource and Health, Chungbuk National University) ;
  • Lim, Yong (College of Pharmacy, Research Center for Bioresource and Health, Chungbuk National University) ;
  • Kim, Tack-Joong (College of Pharmacy, Research Center for Bioresource and Health, Chungbuk National University) ;
  • Oh, Ki-Wan (College of Pharmacy, Research Center for Bioresource and Health, Chungbuk National University) ;
  • Yoo, Hwan-Soo (College of Pharmacy, Research Center for Bioresource and Health, Chungbuk National University) ;
  • Yun, Yeo-Pyo (College of Pharmacy, Research Center for Bioresource and Health, Chungbuk National University)
  • Published : 2007.09.30

Abstract

We have previously reported that green tea catechins(GTC) displayed potent antithrombotic effect, which was due to the antiplatelet activity. In the present study, the antiplatelet activity of each green tea catechin components was compared in vitro. Galloylated catechins including (-)-epigallocatechin gallate (EGCG), (-)-gallocatechin gallate (GCG), (-)-epicatechin gallate (ECG) and (-)-catechin gallate (CG), significantly inhibited collagen $(5{\mu}g/mL)-induced$ rabbit platelet aggregation with $IC_{50}$ values of 79.8, 63.0, 168.2 and $67.3{\mu}M$, respectively. EGCC GCG and CG also significantly inhibited arachidonic acid (AA, $100{\mu}M$)-induced rabbit platelet aggregation with $IC_{50}$ values of 98.9, 200.0 and $174.3{\mu}M$, respectively. However catechins without gallate moiety showed little inhibitory effects against rabbit platelet aggregation induced by collagen or AA compared with galloylated catechins. These observations suggest that the presence of gallate moiety at C-3 position may be essential to the antiplatelet activity of catechins and the presence of B ring galloyl structure may also contribute to the antiplatelet activity of GTC. In line with the inhibition of collagen-induced platelet aggregation, EGCG caused concentration-dependent decreases of cytosolic calcium mobilization, AA liberation and serotonin secretion. In contrast, epigallocatechin (EGC), a structural analogue of EGCG lacking a galloyl group in the 3' position, although slightly inhibited collagen-stimulated cytosolic calcium mobilization, failed to affect other signal transductions as EGCG in activated platelets. Taken together, these observations suggest that the antiplatelet activity of EGCG may be due to inhibition of arachidonic acid liberation and inhibition of $Ca^{2+}$ mobilization and that the antiplatelet of EGCG is enhanced by the presence of a gallate moiety esterified at carbon 3 on the C ring.

저자들은 녹차 카테킨(GTC)이 강한 항 혈전 작용을 나타내며, 이는 항 혈소판 활성에 의한 것임을 보고한 바 있다. 본 연구에서는, 8가지 녹차 카테킨 성분들의 항 혈소판 활성을 비교하였다. 실험결과, 갈레이트(gallate) 구조를 갖는 카테킨들(EGCG, GCG, ECG, CG)은 콜라겐$(5{\mu}g/ml)$으로 유도한 토끼 혈소판 응집능을 강하게 억제하였으며, 50% 억제농도$(IC_{50})$는 각각 79.8, 63.0, 168.2, $67.3{\mu}M$이었다. 또한 EGCG, GCG, CG는 아라키돈산(AA, $100{\mu}M$)으로 유도한 토끼 혈소판 응집능을 억제하였고, 50% 억제농도$(IC_{50})$는 각각 98.9, 200.0, $174.3{\mu}M$이었다. 반면에, 갈레이트 구조를 가지지 않는 카테킨들은 혈소판 응집능 억제 효과가 매우 약했다. 이 결과는 항 혈소판 활성에서 카테킨들의 C-3 위치의 갈레이트 구조의 존재가 매우 중요하다는 것과 카테킨들과 B-ring 갈레이트 구조의 존재 또한 녹차카테킨의 항 혈소판 활성에 중요한 작용한다는 것을 의미한다. 그리고, EGCG는 농도 의존적으로 세포내 칼슘 생성과 아리키돈산의 생성을 억제시켰는데, 이는 혈소판 응집능의 억제와 일치하였다. 반면에, EGC는 세포 내 칼슘 및 다른 혈소판 활성 기전에 아무런 영향이 없었다. 이들 결과는 EGCG의 항 혈소판 활성은 C-ring에서 carbon 3 자리의 에스테르화 된 갈레이트 구조의 존재에 의해서 강화된 항 혈소판 작용으로, 아라키돈산 생성과 세포 내 칼슘 생성을 억제하는 효과에 기인한 것이라 사료된다.

Keywords

References

  1. Mustard, J.F. Function of platelets and their role in thrombosis. Trans Am Clin Climatol Assoc 87, 104-27 (1976)
  2. Packham, M.A., Mustard, J.F. The role of platelets in the development and complications of atherosclerosis. Semin Hematol 23, 8-26 (1986)
  3. Ross, R. The pathogenesis of atherosclerosis: A perspective for the 1990s. Nature 362, 801-9 (1993) https://doi.org/10.1038/362801a0
  4. Flores, N.A., Sheridan, D.J. The pathophysiological role of platelets during myocardial ischaemia. Cardiovasc Res 28, 295-302 (1994) https://doi.org/10.1093/cvr/28.3.295
  5. Ross, J.M., McIntire, L.V. Molecular mechanisms of mural thrombosis under dynamic flow conditions. News Physiol Sci 10, 117-22 (1995)
  6. Smith, J.B., Dangelmaier, C. Determination of platelet adhesion to collagen and the associated formation of phosphatidic acid and calcium mobilization. Anal Biochem 187, 173-8 (1990) https://doi.org/10.1016/0003-2697(90)90437-E
  7. Blake, R.A., Schieven, G.L., Watson, S.P. Collagen stimulates tyrosine phosphorylation of phospholipase C-a2 but not PLC-a1 in human platelets. FEBS Lett 353, 212-6 (1994) https://doi.org/10.1016/0014-5793(94)01037-4
  8. Daniel, J.L., Dangelmaier, C., Smith, J.B. Evidence for a role for tyrosine phosphorylation of phospholipase Ca2 in collagen-induced platelet cytosolic calcium mobilization. Biochem J 302, 617-22 (1994) https://doi.org/10.1042/bj3020617
  9. Kramer, R.M., Roberts, E.F., Manetta, J.V., Hyslop, P.A., Jakubowski, J.A. Thrombin-induced phosphorylation and activation of $Ca^{2+}$-sensitive cytosolic phospholipase $A_2$ in human platelets. J Biol Chem 268, 26796-804 (1993)
  10. Mahadevappa, V.G., Holub, B.J. Diacylglycerol lipase pathway is a minor source of released arachidonic acid in thrombin-stimulated human platelets. Biochem Biophys Res Commun 134, 1327-33 (1986) https://doi.org/10.1016/0006-291X(86)90395-5
  11. Vedelago, H.R., Mahadevappa, V.G. Mobilization of arachidonic acid in collagen-stimulated human platelets. Biochem J 256, 981-7 (1988) https://doi.org/10.1042/bj2560981
  12. Packham, M.A. The role of platelets in thrombosis and hemostasis. Can J Physiol Pharmacol 72, 278-84 (1994) https://doi.org/10.1139/y94-043
  13. Moncada, S., Vane, J.R. Pharmacology and endogenous roles of prostaglandin endoperoxides, thromboxane $A_2$, and prostacyclin. Pharmacol Rev 30, 293-331(1978)
  14. FitzGerald, G.A. Mechanisms of platelet activation: thromboxane $A_2$ as an amplifying signal for other agonists. Am J Cardiol 68, 11B-5B(1991) https://doi.org/10.1016/0002-9149(91)90379-Y
  15. Muramatsu, K., Fukuyo, M., Hara, Y. Effect of green tea catechins on plasma cholesterol level in cholesterol-fed rats. J Nutr Sci Vitaminol (Tokyo) 32, 613-22 (1986) https://doi.org/10.3177/jnsv.32.613
  16. Yamaguchi, Y., Hayashi, M., Yamazoe, H., Kunitomo, M. Preventive effects of green tea extract on lipid abnormalities in serum, liver and aorta of mice fed an atherogenic diet. Nippon Yakurigaku Zasshi 97, 329-37 (1991) https://doi.org/10.1254/fpj.97.6_329
  17. Uchida, S., Ozaki, M., Akashi, T., Yamashita, K., Niwa, M., Taniyama, K. Effects of (-)epigallocatechin-3-o-gallate (green tea tannin) on the life span of stroke-prone spontaneously hypertensive rats. Clin Exp Pharmacol Physiol 22, S302-3 (1995) https://doi.org/10.1111/j.1440-1681.1995.tb02928.x
  18. Yokozawa, T., Oura, H., Nakagawa, H., Sakanaka, S., Kim, M. Effects of a component of green tea on the proliferation of vascular smooth muscle cells. Biosci Biotechnol Biochem 59, 2134-6 (1995) https://doi.org/10.1271/bbb.59.2134
  19. Yang, C.S., Wang, Z.Y. Tea and cancer. J Natl Cancer Inst 85, 1038-49 (1993) https://doi.org/10.1093/jnci/85.13.1038
  20. Jankun, J., Selman, S.H., Swiercz, R., Zkrzypczak-Jankun, E. Why drinking green tea could prevent cancer. Nature 387, 561 (1997) https://doi.org/10.1038/42381
  21. Hirano, R., Sasamoto, W., Matsumoto, A., Itakura, H., Igarashi, O., Kondo, K. Antioxidant ability of various flavonoids against DPPH radicals and LDL oxidation. J Nutr Sci Vitaminol (Tokyo) 47, 357-62 (2001) https://doi.org/10.3177/jnsv.47.357
  22. Mure, K., Rossman, T.G. Reduction of spontaneous mutagenesis in mismatch repair-deficient and proficient cells by dietary antioxidants. Mutat Res 480-481, 85-95 (2001) https://doi.org/10.1016/S0027-5107(01)00172-5
  23. Wang, S.I., Mukhtar, H. Gene expression profile in human prostate LNCaP cancer cells by (-)epigallocatechin-3-gallate. Cancer Lett 182, 43-51 (2002) https://doi.org/10.1016/S0304-3835(02)00065-4
  24. Jung, Y.D., Ellis, L.M. Inhibition of tumour invasion and angiogenesis by epigallocatechin gallate (EGCG), a major component of green tea. Int J Exp Pathol 82, 309-16 (2001) https://doi.org/10.1046/j.1365-2613.2001.00205.x
  25. Kang, W.S., Lim, I.H., Yuk, D.Y., Chung, K.H, Park, J.B., Yoo, H.S., Yun, Y.P. Antithrombotic activities of green tea catechins and (-)-epigallocatechin gallate. Thromb Res 96, 229-37 (1999) https://doi.org/10.1016/S0049-3848(99)00104-8
  26. Kang, W.S., Chung, K.H., Chung, J.H., Lee, J.Y., Park, J.B., Zhang, Y.H., Yoo, H.S., Yun, Y.P. Antiplatelet activity of green tea catechin is mediated by inhibition of cytoplasmic calcium increase. J Cardiovasc Pharmacol 38, 875-84 (2001) https://doi.org/10.1097/00005344-200112000-00009
  27. Son, D.J., Cho, M.R., Jin, Y.R., Kim, S.Y., Park, Y.H., Lee, S.H., Akiba, S., Sato, T., Yun, Y.P. Antiplatelet effect of green tea catechins: a possible mechanism through arachidonic acid pathway. Prostag Leukotr Ess 71, 25-31 (2004) https://doi.org/10.1016/j.plefa.2003.12.004
  28. Born, G.V.R. Uptake of adenosine diphosphate by human blood platelets. Nature 194, 927-9 (1962)
  29. Holmsen, H., Dangelmaier, C.A. Measurement of secretion of serotonin. Methods Enzymol 169, 205-10 (1989) https://doi.org/10.1016/0076-6879(89)69061-1
  30. Akiba, S., Murata, T., Kitatani, K., Sato, T. Involvement of lipoxygenase pathway in docosapentaenoic acid-induced inhibition of platelet aggregation. Biol Pharm Bull 23, 1293-7 (2000) https://doi.org/10.1248/bpb.23.1293
  31. Jin, Y.R., Cho, M.R., Ryu, C.K., Chung, J.H., Yuk, D.Y., Hong, J.T., Lee, K.S., Lee, J.J., Lee, M.Y., Lim, Y., Yun, Y.P. Antiplatelet activity of J78, an antithrombotic agent, is mediated by thromboxane $A_2$ receptor blockade with $TXA_2$ synthase inhibition and suppression of cytosolic $Ca^{2+}$ mobilization. J Pharmacol Exp Ther 312, 214-9 (2005) https://doi.org/10.1124/jpet.104.073718
  32. Grynkiewics, G., Poenie, M., Tsien, R.Y. A new generation of $Ca^{2+}$ indicators with greatly improved fluorescence properties. J Biol Chem 260, 3440-50 (1985)
  33. Hubbard, G.P., Stevens, J.M., Cicmil, M., Sage, T., Jordan, P.A., Williams, C.M., Lovegrove, J.A., Gibbins, J.M. Quercetin inhibits collagen-stimulated platelet activation through inhibition of multiple components of the glycoprotein VI signaling pathway. J Thromb Haemost 1, 1079-88 (2003) https://doi.org/10.1046/j.1538-7836.2003.00212.x
  34. Randriamampita, C., Tsien, R.Y. Emptying of intracellular $Ca^{2+}$ stores releases a novel small messenger that stimulates $Ca^{2+}$ influx. Nature 364, 809-14 (1993) https://doi.org/10.1038/364809a0
  35. Turetta, L., Bazzan, E., Bertagno, K., Musacchio, E., Deana, R. Role of $Ca^{2+}$ and protein kinase C in the serotonin (5-HT) transport in human platelets. Cell Calcium 31, 235-44 (2002) https://doi.org/10.1016/S0143-4160(02)00052-0
  36. McKay, D.L., Blumberg, J.B. The role of tea in human health: an update. J Am Coll Nutr 21, 1-13 (2002) https://doi.org/10.1080/07315724.2002.10719187
  37. Nanjo, F., Mori, M., Goto, K., Hara, Y. Radical scavenging activity of tea catechins and their related compounds. Biosci Biotechnol Biochem 63, 1621-3 (1999) https://doi.org/10.1271/bbb.63.1621
  38. Wang, H., Provan, G.J., Helliwell, K. Tea flavonoids: their functions, utilization, and analysis. Trends Food Sci Tech 11, 152-60 (2000) https://doi.org/10.1016/S0924-2244(00)00061-3
  39. Yang, C.S., Chung, J.Y., Yang, G.Y, Chhabra, S.K., Lee, M.J. Tea and tea polyphenols in cancer prevention. J Nutr 130, 472S-8S (2000) https://doi.org/10.1093/jn/130.2.472S
  40. Bell, R.L., Kennerly, D.A., Stanford, N., Majerus, P.W. Diglyceride lipase: a pathway for arachidonate release from human platelets. Proc Natl Acad Sci USA 76, 3238-41 (1979)
  41. Billah, M.M., Lapetina, E.G., Cuatrecasas, P. Phospholipase A2 activity specific for phosphatidic acid: a possible mechanism for the production of arachidonic acid in platelets. J Biol Chem 256, 5399-403 (1981)
  42. Lin, L.L., Lin, A.Y., Knopf, J.L. Cytosolic phospholipase $A_2$ is coupled to hormonally regulated release of arachidonic acid. Proc Natl Acad Sci USA 89, 6147-51 (1992)
  43. Mounier, C., Vargaftig, B.B., Franken, P.A., Verheij, H.M., Bon, C., Touqui, L. Platelet secretory phospholipase $A_2$ fails to induce rabbit platelet activation and to release arachidonic acid in contrast with venom phospholipase$A_2$. Biochim Biophys Acta 1214, 88-96 (1994) https://doi.org/10.1016/0005-2760(94)90013-2
  44. Nishizuka, Y. The role of protein kinase C in cell surface signal transduction and tumor promotion. Nature 308, 693-8 (1984) https://doi.org/10.1038/308693a0
  45. Somlyo, A.P., Somlyo, A.V. Signal transduction and regulation in smooth muscle. Nature 372, 231-6 (1994) https://doi.org/10.1038/372231a0