References
- Mustard, J.F. Function of platelets and their role in thrombosis. Trans Am Clin Climatol Assoc 87, 104-27 (1976)
- Packham, M.A., Mustard, J.F. The role of platelets in the development and complications of atherosclerosis. Semin Hematol 23, 8-26 (1986)
- Ross, R. The pathogenesis of atherosclerosis: A perspective for the 1990s. Nature 362, 801-9 (1993) https://doi.org/10.1038/362801a0
- Flores, N.A., Sheridan, D.J. The pathophysiological role of platelets during myocardial ischaemia. Cardiovasc Res 28, 295-302 (1994) https://doi.org/10.1093/cvr/28.3.295
- Ross, J.M., McIntire, L.V. Molecular mechanisms of mural thrombosis under dynamic flow conditions. News Physiol Sci 10, 117-22 (1995)
- Smith, J.B., Dangelmaier, C. Determination of platelet adhesion to collagen and the associated formation of phosphatidic acid and calcium mobilization. Anal Biochem 187, 173-8 (1990) https://doi.org/10.1016/0003-2697(90)90437-E
- Blake, R.A., Schieven, G.L., Watson, S.P. Collagen stimulates tyrosine phosphorylation of phospholipase C-a2 but not PLC-a1 in human platelets. FEBS Lett 353, 212-6 (1994) https://doi.org/10.1016/0014-5793(94)01037-4
- Daniel, J.L., Dangelmaier, C., Smith, J.B. Evidence for a role for tyrosine phosphorylation of phospholipase Ca2 in collagen-induced platelet cytosolic calcium mobilization. Biochem J 302, 617-22 (1994) https://doi.org/10.1042/bj3020617
-
Kramer, R.M., Roberts, E.F., Manetta, J.V., Hyslop, P.A., Jakubowski, J.A. Thrombin-induced phosphorylation and activation of
$Ca^{2+}$ -sensitive cytosolic phospholipase$A_2$ in human platelets. J Biol Chem 268, 26796-804 (1993) - Mahadevappa, V.G., Holub, B.J. Diacylglycerol lipase pathway is a minor source of released arachidonic acid in thrombin-stimulated human platelets. Biochem Biophys Res Commun 134, 1327-33 (1986) https://doi.org/10.1016/0006-291X(86)90395-5
- Vedelago, H.R., Mahadevappa, V.G. Mobilization of arachidonic acid in collagen-stimulated human platelets. Biochem J 256, 981-7 (1988) https://doi.org/10.1042/bj2560981
- Packham, M.A. The role of platelets in thrombosis and hemostasis. Can J Physiol Pharmacol 72, 278-84 (1994) https://doi.org/10.1139/y94-043
-
Moncada, S., Vane, J.R. Pharmacology and endogenous roles of prostaglandin endoperoxides, thromboxane
$A_2$ , and prostacyclin. Pharmacol Rev 30, 293-331(1978) -
FitzGerald, G.A. Mechanisms of platelet activation: thromboxane
$A_2$ as an amplifying signal for other agonists. Am J Cardiol 68, 11B-5B(1991) https://doi.org/10.1016/0002-9149(91)90379-Y - Muramatsu, K., Fukuyo, M., Hara, Y. Effect of green tea catechins on plasma cholesterol level in cholesterol-fed rats. J Nutr Sci Vitaminol (Tokyo) 32, 613-22 (1986) https://doi.org/10.3177/jnsv.32.613
- Yamaguchi, Y., Hayashi, M., Yamazoe, H., Kunitomo, M. Preventive effects of green tea extract on lipid abnormalities in serum, liver and aorta of mice fed an atherogenic diet. Nippon Yakurigaku Zasshi 97, 329-37 (1991) https://doi.org/10.1254/fpj.97.6_329
- Uchida, S., Ozaki, M., Akashi, T., Yamashita, K., Niwa, M., Taniyama, K. Effects of (-)epigallocatechin-3-o-gallate (green tea tannin) on the life span of stroke-prone spontaneously hypertensive rats. Clin Exp Pharmacol Physiol 22, S302-3 (1995) https://doi.org/10.1111/j.1440-1681.1995.tb02928.x
- Yokozawa, T., Oura, H., Nakagawa, H., Sakanaka, S., Kim, M. Effects of a component of green tea on the proliferation of vascular smooth muscle cells. Biosci Biotechnol Biochem 59, 2134-6 (1995) https://doi.org/10.1271/bbb.59.2134
- Yang, C.S., Wang, Z.Y. Tea and cancer. J Natl Cancer Inst 85, 1038-49 (1993) https://doi.org/10.1093/jnci/85.13.1038
- Jankun, J., Selman, S.H., Swiercz, R., Zkrzypczak-Jankun, E. Why drinking green tea could prevent cancer. Nature 387, 561 (1997) https://doi.org/10.1038/42381
- Hirano, R., Sasamoto, W., Matsumoto, A., Itakura, H., Igarashi, O., Kondo, K. Antioxidant ability of various flavonoids against DPPH radicals and LDL oxidation. J Nutr Sci Vitaminol (Tokyo) 47, 357-62 (2001) https://doi.org/10.3177/jnsv.47.357
- Mure, K., Rossman, T.G. Reduction of spontaneous mutagenesis in mismatch repair-deficient and proficient cells by dietary antioxidants. Mutat Res 480-481, 85-95 (2001) https://doi.org/10.1016/S0027-5107(01)00172-5
- Wang, S.I., Mukhtar, H. Gene expression profile in human prostate LNCaP cancer cells by (-)epigallocatechin-3-gallate. Cancer Lett 182, 43-51 (2002) https://doi.org/10.1016/S0304-3835(02)00065-4
- Jung, Y.D., Ellis, L.M. Inhibition of tumour invasion and angiogenesis by epigallocatechin gallate (EGCG), a major component of green tea. Int J Exp Pathol 82, 309-16 (2001) https://doi.org/10.1046/j.1365-2613.2001.00205.x
- Kang, W.S., Lim, I.H., Yuk, D.Y., Chung, K.H, Park, J.B., Yoo, H.S., Yun, Y.P. Antithrombotic activities of green tea catechins and (-)-epigallocatechin gallate. Thromb Res 96, 229-37 (1999) https://doi.org/10.1016/S0049-3848(99)00104-8
- Kang, W.S., Chung, K.H., Chung, J.H., Lee, J.Y., Park, J.B., Zhang, Y.H., Yoo, H.S., Yun, Y.P. Antiplatelet activity of green tea catechin is mediated by inhibition of cytoplasmic calcium increase. J Cardiovasc Pharmacol 38, 875-84 (2001) https://doi.org/10.1097/00005344-200112000-00009
- Son, D.J., Cho, M.R., Jin, Y.R., Kim, S.Y., Park, Y.H., Lee, S.H., Akiba, S., Sato, T., Yun, Y.P. Antiplatelet effect of green tea catechins: a possible mechanism through arachidonic acid pathway. Prostag Leukotr Ess 71, 25-31 (2004) https://doi.org/10.1016/j.plefa.2003.12.004
- Born, G.V.R. Uptake of adenosine diphosphate by human blood platelets. Nature 194, 927-9 (1962)
- Holmsen, H., Dangelmaier, C.A. Measurement of secretion of serotonin. Methods Enzymol 169, 205-10 (1989) https://doi.org/10.1016/0076-6879(89)69061-1
- Akiba, S., Murata, T., Kitatani, K., Sato, T. Involvement of lipoxygenase pathway in docosapentaenoic acid-induced inhibition of platelet aggregation. Biol Pharm Bull 23, 1293-7 (2000) https://doi.org/10.1248/bpb.23.1293
-
Jin, Y.R., Cho, M.R., Ryu, C.K., Chung, J.H., Yuk, D.Y., Hong, J.T., Lee, K.S., Lee, J.J., Lee, M.Y., Lim, Y., Yun, Y.P. Antiplatelet activity of J78, an antithrombotic agent, is mediated by thromboxane
$A_2$ receptor blockade with$TXA_2$ synthase inhibition and suppression of cytosolic$Ca^{2+}$ mobilization. J Pharmacol Exp Ther 312, 214-9 (2005) https://doi.org/10.1124/jpet.104.073718 -
Grynkiewics, G., Poenie, M., Tsien, R.Y. A new generation of
$Ca^{2+}$ indicators with greatly improved fluorescence properties. J Biol Chem 260, 3440-50 (1985) - Hubbard, G.P., Stevens, J.M., Cicmil, M., Sage, T., Jordan, P.A., Williams, C.M., Lovegrove, J.A., Gibbins, J.M. Quercetin inhibits collagen-stimulated platelet activation through inhibition of multiple components of the glycoprotein VI signaling pathway. J Thromb Haemost 1, 1079-88 (2003) https://doi.org/10.1046/j.1538-7836.2003.00212.x
-
Randriamampita, C., Tsien, R.Y. Emptying of intracellular
$Ca^{2+}$ stores releases a novel small messenger that stimulates$Ca^{2+}$ influx. Nature 364, 809-14 (1993) https://doi.org/10.1038/364809a0 -
Turetta, L., Bazzan, E., Bertagno, K., Musacchio, E., Deana, R. Role of
$Ca^{2+}$ and protein kinase C in the serotonin (5-HT) transport in human platelets. Cell Calcium 31, 235-44 (2002) https://doi.org/10.1016/S0143-4160(02)00052-0 - McKay, D.L., Blumberg, J.B. The role of tea in human health: an update. J Am Coll Nutr 21, 1-13 (2002) https://doi.org/10.1080/07315724.2002.10719187
- Nanjo, F., Mori, M., Goto, K., Hara, Y. Radical scavenging activity of tea catechins and their related compounds. Biosci Biotechnol Biochem 63, 1621-3 (1999) https://doi.org/10.1271/bbb.63.1621
- Wang, H., Provan, G.J., Helliwell, K. Tea flavonoids: their functions, utilization, and analysis. Trends Food Sci Tech 11, 152-60 (2000) https://doi.org/10.1016/S0924-2244(00)00061-3
- Yang, C.S., Chung, J.Y., Yang, G.Y, Chhabra, S.K., Lee, M.J. Tea and tea polyphenols in cancer prevention. J Nutr 130, 472S-8S (2000) https://doi.org/10.1093/jn/130.2.472S
- Bell, R.L., Kennerly, D.A., Stanford, N., Majerus, P.W. Diglyceride lipase: a pathway for arachidonate release from human platelets. Proc Natl Acad Sci USA 76, 3238-41 (1979)
- Billah, M.M., Lapetina, E.G., Cuatrecasas, P. Phospholipase A2 activity specific for phosphatidic acid: a possible mechanism for the production of arachidonic acid in platelets. J Biol Chem 256, 5399-403 (1981)
-
Lin, L.L., Lin, A.Y., Knopf, J.L. Cytosolic phospholipase
$A_2$ is coupled to hormonally regulated release of arachidonic acid. Proc Natl Acad Sci USA 89, 6147-51 (1992) -
Mounier, C., Vargaftig, B.B., Franken, P.A., Verheij, H.M., Bon, C., Touqui, L. Platelet secretory phospholipase
$A_2$ fails to induce rabbit platelet activation and to release arachidonic acid in contrast with venom phospholipase$A_2$ . Biochim Biophys Acta 1214, 88-96 (1994) https://doi.org/10.1016/0005-2760(94)90013-2 - Nishizuka, Y. The role of protein kinase C in cell surface signal transduction and tumor promotion. Nature 308, 693-8 (1984) https://doi.org/10.1038/308693a0
- Somlyo, A.P., Somlyo, A.V. Signal transduction and regulation in smooth muscle. Nature 372, 231-6 (1994) https://doi.org/10.1038/372231a0