A Traffic Assignment Model in Multiclass Transportation Networks

교통망에서 다차종 통행을 고려하는 통행배정모형 수립

  • 박구현 (홍익대학교 정보산업공학과)
  • Published : 2007.09.30

Abstract

This study is a generalization of 'stable dynamics' recently suggested by Nesterov and de Palma[29]. Stable dynamics is a new model which describes and provides a stable state of congestion in urban transportation networks. In comparison with user equilibrium model that is common in analyzing transportation networks, stable dynamics requires few parameters and is coincident with intuitions and observations on the congestion. Therefore it is expected to be an useful analysis tool for transportation planners. An equilibrium in stable dynamics needs only maximum flow in each arc and Wardrop[33] Principle. In this study, we generalize the stable dynamics into the model with multiple traffic classes. We classify the traffic into the types of vehicle such as cars, buses and trucks. Driving behaviors classified by age, sex and income-level can also be classes. We develop an equilibrium with multiple traffic classes. We can find the equilibrium by solving the well-known network problem, multicommodity minimum cost network flow problem.

Keywords

References

  1. 신성길, 김정현, 백남철, '다계층 운잔자를 고려한 동적통행배정모형의 해법', 대한교통학회지, 제21권, 제6호(2003) pp,77-88
  2. 유순경, 이영인, 임강원, 임용택, '다계층을 고려한 대중교통 확률적 사용자 균형 알고리즘개발', 대한교통학회지, 제23권, 제7호(2005), pp.165-179
  3. 이승재, 손의영, 김인경, '다수단 다계층 통행정보제공에 따른 일별동적결합모형 개발 및 평가', 대한교통학회지, 제17권, 제4호 (1999) pp.85-97
  4. 이준, 이영인, 임강원, 임용택, '동적 경로안내 전략 수행을 위한 다계층 통행배정모형의 개발', 대한교통학회지, 제22권, 제7호(2004) pp.91-98
  5. Ahuja, K.R., L.T. Magnanti and B.J. Orlin, Network Flows: Theory, Algorithms and Applications. Prentice Hall, (1993)
  6. Babonneau, F. and J.-P. Vial, 'An Efficient Method to Compute Traffic Assignment Problems with Elastic Demands,' Manuscript, University of Geneva, Switzerland, (2007)
  7. Beckmann, M., C. McGuire, and C. Winsten, Studies in Economics of Transportation, Yale University Press, New Haven, (1956)
  8. Bellei, G., G. Gentile and N. Papola, 'Network Pricing Optimization in Multi- user and Multimoda1 Context with Elastic Demand,' Transportation Research B Vol. 36(2002), pp.779-798 https://doi.org/10.1016/S0191-2615(01)00030-3
  9. Bernstein, D.H. and T.E. Smith, 'Equilibria for Networks with Lower Semicontinuous Costs: With an Application to Congested Pricing,' Transportation Science, Vol.28(1994), pp.221-235 https://doi.org/10.1287/trsc.28.3.221
  10. Braess D. and G. Koch, 'On the Existence of Equilibria in Asymmetrical Multiclass-User Transportation Networks,' Transportation Science Vol.13(1979) pp.56-63 https://doi.org/10.1287/trsc.13.1.56
  11. Chen, M. and D.H. Berstein, 'Solving the Toll Design Problem with Multiple User Groups,' Transportation Research B, Vol. 38(2004) pp.61-79 https://doi.org/10.1016/S0191-2615(03)00002-X
  12. Connors, R.D., A. Sumalee and D.P. Waltling, 'Sensitivity Analysis of the Variable Demand Probit Stochatic User Equilibrium with Multiple User-Classes,' Transportation Research B Vol.41(2007) pp.593-615 https://doi.org/10.1016/j.trb.2006.11.003
  13. Dafermos, S.C., 'An Extended Traffic Assignment Model with Applications to Two-Way Traffic,' Transportation Science Vol.5(1971) pp.366-389 https://doi.org/10.1287/trsc.5.4.366
  14. Dafermos, S.C., 'The Traffic Assignment Problem for Multiclass-user Transportation Networks,' Transportation Science, Vol.6(1972) pp.73-87 https://doi.org/10.1287/trsc.6.1.73
  15. Dafermos, S.C., 'Toll Patterns for Multiclass-User Transportation Networks,' Transportation Science Vol.7(1973) pp.211-223 https://doi.org/10.1287/trsc.7.3.211
  16. Dafermos, S.C., 'Traffic Equilibrium and Variational Inequality,' Transportation Science Vol.14(1980) pp.42-54 https://doi.org/10.1287/trsc.14.1.42
  17. Dafermos, S.C., 'A Multicriteria RouteMode Choice Traffic Equilibrium Model,' Lefschetz Center for Dynamical System, Brown University, Providence, RI, 1981
  18. Daganzo, C.F., 'Stochastic Network Equilibrium with Multiple Vehicle Types and Asymmetric, Indefinite Link Cost Iacobians,' Transportation Science Vol.17(1983) pp.282-300 https://doi.org/10.1287/trsc.17.3.282
  19. Daganzo, C.F. and Y. Sheffi, 'On Stochastic Model of Traffic Assignment,' Transportation Science Vol.11(1977) pp.253-274 https://doi.org/10.1287/trsc.11.3.253
  20. De Palma, A. and Y. Nesterov, 'Optimization Formulation and Static Equilibrium in Congested Transportation Networks,' CORE DP #9861, Universite Catholigue de Louvain, (1998)
  21. De Palma, A. and Y. Nesterov, 'Park and Ride for the Morning and Evening Commute,' In: S. Lawphongpanich, D.W. Hearn and M.J. Smith (Ed.), Mathematical and Computational Models for Congestion Oarging, Applied Optimization Vol.101, Springer, (2006) pp.143-157 https://doi.org/10.1007/0-387-29645-X_7
  22. Dial, R.B., 'A Probabilistic Multipath Traffic Assignment Model Which Obviates Path Enumeration,' Transportation Research Vol.5(1971), pp.83-111 https://doi.org/10.1016/0041-1647(71)90012-8
  23. Dial, R.B., 'A Model and Algorithm for Multicriteria Route-Mode Choice,' Transportation Research B Vol.13(1979), pp. 311-316 https://doi.org/10.1016/0191-2615(79)90024-9
  24. Heydecker, B.G. and J.D. Addison, 'An Exact Expression of Dynamic Traffic Equilibrium,' In: Lesort, J.B. (Ed.), Transportation and Traffic Theory, Pergamon, Oxford, (1996), pp.359-383
  25. Lam, W.H.K and H.J. Huang, 'A Combined Trip Distribution and Assignment for Multiple User Classes,' Transportation Research B, Vol.26(1992), pp.275-287 https://doi.org/10.1016/0191-2615(92)90038-X
  26. Nagurney, A., Network Economics: A Variational Inequality Approach, Kluwer Academic Publishers, Dordrecht, (1993)
  27. Nagumey, A and J. Dong, 'A Multiclass, Multicriteria Traffic Network Equilibrium Model with Elastic Demand,' Transportation Research B Vol.36(2002), pp.445-469 https://doi.org/10.1016/S0191-2615(01)00013-3
  28. Nesterov, Y. and A. de Palma, 'Stable Traffic Equilibria: Properties and Applications,' Optimization and Engineering, Vol.1(2000), pp.29-50 https://doi.org/10.1023/A:1010042405534
  29. Nesterov, Y. and A. de Palma, 'Stable Dynamics in Transportation Systems,' CORE DP #00/27, University of Louvain, Belgium, (2000)
  30. Ouorou, A., P. Mabey and J.-Ph. Vial, 'A Survey of Algorithms for Convex Multicommodity Flow Problems,' Research Report 97/13, University of Geneva, (1997)
  31. Ran, B. and D.B. Boyce, Modelling Dynamic Transportation Networks: An Intelligent Transportation System Oriented Approach, Springer, (1996)
  32. Steinberg, R. and W.I. Zangwill, 'The Prevalence of Braess' Paradox,' Transportation Science, Vol.17(1983), pp.301-318 https://doi.org/10.1287/trsc.17.3.301
  33. Wardrop, J.G., 'Some Theoretical Aspects of Road Traffic Research,' in Proceedings of the Institute of Civil Engineering, Part II, (1952) pp.325-37
  34. Wong, K.I., S.C. Wong, J.H. Wu, H. Yang, and W.H.K. Lam, 'A Combined Distribution, Hierarchical Mode Choice, and Assignment Network Model with Multiple User and Mode Classes,' In: Lee, D.H. (Ed.), Urban and Regional Transportation Modeling: Essays in Honor of David Boyce, Edward Elgar Publishing Inc., Northampton, USA, (2003)
  35. Yang, H. and X. Zhang, 'Multiclass Network Toll Design Problem with Social and Spacial Equity Constraints,' Journal of Transportation Engineering, (2002), pp. 420-428
  36. Zhao, Y. and K.M. Kochelman, 'On-line Marginal-Cost Pricing Across Networks: Incorporating Heterogeneous Users and Stochastic Equilibria,' Transportation Research B Vol.40(2006), pp.424-435 https://doi.org/10.1016/j.trb.2005.08.001
  37. U.S. Bureau of Public Roads, Traffic Assignment Manual, Washington, D.C., (1964)
  38. 'Updated BPR Parameters Using HCM Procedures,' cited from 'Traffic Engineering: Planning for Traffic Loads,' http://www.sierrafoot.org/local/gp/engineering.html