Facilitation of SUMO (Small Ubiquitin-like Modifier) Modification at Tau 340-Lys Residue (a Microtubule-associated Protein) through Phosphorylation at 214-Ser Residue

  • Lee, Eun-Jeoung (School of Science Education, Chungbuk National University) ;
  • Hyun, Sung-Hee (Department of Pre-medicine, Eulji University School of Medicine) ;
  • Chun, Jae-Sun (Department of Biology Education, Korea National University of Education) ;
  • Ahn, Hye-Rim (School of Science Education, Chungbuk National University) ;
  • Kang, Sang-Sun (School of Science Education, Chungbuk National University)
  • Published : 2007.06.30

Abstract

Tau plays a role in numerous neuronal processes, such as vesicle transport, microtubule-plasma membrane interaction and intracellular localization of proteins. SUMO (Small Ubiquitin-like Modifier) modification (SUMOylation) appears to regulate diverse cellular processes including nuclear transport, signal transduction, apoptosis, autophagy, cell cycle control, ubiquitin-dependent degradation, as well as gene transcription. We noticed that putative SUMOylation site is localized at $^{340}K$ of $Tau(^{339}VKSE^{342})$ with the consensus sequence information (${\Phi}KxE$ ; where ${\Phi}$ represents L, I, V or F and x is any amino acid). In this report, we demonstrated that $^{340}K$ of Tau is the SUMOylation site and that a point mutant of Tau S214E (an analog of the phospho $^{214}S$ Tau) promotes its SUMOylation at $^{340}K$ and its nuclear or nuclear vicinity localization, by co-immunoprecipitation and confocal microscopy analysis. Further, we demonstrate that the Tau S214E (neither Tau S214A nor Tau K340R) mutant increases its protein stability. However, the SUMOylation at $^{340}K$ of Tau did not influence cell survival, as determined by FACS analysis. Therefore, our results suggested that the phosphorylation of Tau on $^{214}S$ residue promotes its SUMOylation on $^{340}K$ residue and nuclear vicinity localization, and increases its stability, without influencing cell survival.

Keywords

References

  1. Bischof O, Schwamborn K, Martin N, Werner A, Sustmann C, Grosschedl R, Dejean A (2006) The E3 SUMO ligase PIASy is a regulator of cellular senescence and apoptosis. Mol. Cell. 22: 783-794 https://doi.org/10.1016/j.molcel.2006.05.016
  2. Boggio R, Colombo R, Hay RT, Draetta GF, Chiocca S (2004) A mechanism for inhibiting the SUMO pathway. Mol. Cell.16: 549-61 https://doi.org/10.1016/j.molcel.2004.11.007
  3. Butterfield DA, Abdul HM, Opii W, Newman SF, Joshi G, Ansari MA, Sultana R (2006) Pin1 in Alzheimer's disease. J. Neurochem. 98: 1697-1706 https://doi.org/10.1111/j.1471-4159.2006.03995.x
  4. Chong ZZ, Li F, Maiese K (2005) Stress in the brain: novel cellular mechanisms of injury linked to Alzheimer's disease. Brain Res Brain Res Rev. 49: 1-21 https://doi.org/10.1016/j.brainresrev.2004.11.005
  5. Chun J, Kwon T, Lee EJ, Kim CH, Han YS, Hong SK, Hyun S, Kang SS (2004) 14-3-3 Protein mediates phosphorylation of microtubule-associated protein tau by serum- and glucocorticoid-induced protein kinase 1. Mol.Cells 18: 360- 368
  6. Dorval V, Fraser PE (2006) Small ubiquitin-like modifier (SUMO) modification of natively unfolded proteins tau and alpha-synuclein. J. Biol. Chem. 281: 9919-9924 https://doi.org/10.1074/jbc.M510127200
  7. Duprez E, Saurin AJ, Desterro JM, Lallemand-Breitenbach V, Howe K, Boddy MN, Solomon E, de The H, Hay RT, Freemont PS (1999) SUMO-1 modification of the acute promyelocytic leukaemia protein PML: implications for nuclear localisation. J. Cell Sci. 112 : 381-393
  8. Feinstein SC, Wilson L (2005) Inability of tau to properly regulate neuronal microtubule dynamics: a loss-of-function mechanism by which tau might mediate neuronal cell death. Biochim Biophys Acta. 1739: 268-279 https://doi.org/10.1016/j.bbadis.2004.07.002
  9. Vega FM, Sevilla A, Lazo PA (2004) p53 Stabilization and Accumulation Induced by Human Vaccinia-Related Kinase 1. Mol. Cell. Biol. 24: 10366-10380 https://doi.org/10.1128/MCB.24.23.10366-10380.2004
  10. Friedhoff P, von Bergen M, Mandelkow E M, Mandelkow E (2000) Structure of tau protein and assembly into paired helical filaments. Biochim. Biophys. Acta.1502: 122-132 https://doi.org/10.1016/S0925-4439(00)00038-7
  11. Gill G. (2004) SUMO and ubiquitin in the nucleus: different functions, similar mechanisms? Genes Dev. 18: 2046-2059 https://doi.org/10.1101/gad.1214604
  12. Goldsbury C, Mocanu MM, Thies E, Kaether C, Haass C, Keller P, Biernat J, Mandelkow E, Mandelkow EM (2006)Inhibition of APP trafficking by tau protein does not increase the generation of amyloid-beta peptides. Traffic 7: 873-888 https://doi.org/10.1111/j.1600-0854.2006.00434.x
  13. Gregoire S, Tremblay AM, Xiao L , Yang Q, Ma K, Nie J, Mao Z, Wu Z, Giguere V, Yang XJ (2006) Control of MEF2 transcriptional activity by coordinated phosphorylation and SUMOylation J Biol Chem 281: 44234433
  14. Hietakangas V, Anckar J , Blomster HA, Fujimoto M, Palvimo JJ, Nakai A, Sistonen L (2006) PDSM, a motif for phosphorylation-dependent SUMO modification. Proc. Nat.l Acad. Sci. USA 103: 4550
  15. Iqbal K, Grundke-Iqbal I (1991) Ubiquitination and abnormal phosphorylation of paired helical filaments in Alzheimer's disease. Mol. Neurobiol. 5: 399-410 https://doi.org/10.1007/BF02935561
  16. Johnson G.V, Stoothoff WH (2004) Tau phosphorylation in neuronal cell function and dysfunction. J Cell Sci. 117: 5721- 5729 https://doi.org/10.1242/jcs.01558
  17. Kagey MH, Melhuish TA, Wotton D (2003) The polycomb protein Pc2 is a SUMO E3. Cell 113: 127-137 https://doi.org/10.1016/S0092-8674(03)00159-4
  18. Kikuchi A, Kishida S, Yamamoto H (2006) Regulation of Wnt signaling by protein-protein interaction and post-translational modifications. Exp. Mo.l Med. 38: 1-10 https://doi.org/10.1038/emm.2006.1
  19. Ksiezak-Reding H, Pyo HK, Feinstein B, Pasinetti GM (2003) Akt/PKB kinase phosphorylates separately Thr212 and Ser214 of tau protein in vitro. Biochim. Biophys. Acta. 1639: 159-168 https://doi.org/10.1016/j.bbadis.2003.09.001
  20. Leung MF, Sokoloski JA, Sartorelli AC (1992) Changes in microtubules, microtubule-associated proteins, and intermediate filaments during the differentiation of HL-60 leukemia cells. Cancer Res. 52: 949-954
  21. Luna-Munoz J, Garcia-Sierra F, Falcon V, Menendez I, Chavez- Macias L, Mena R (2005) Regional conformational change involving phosphorylation of tau protein at the Thr231, precedes the structural change detected by Alz-50 antibody in Alzheimer's disease. J. Alzheimers Dis. 8: 29-41 https://doi.org/10.3233/JAD-2005-8104
  22. Mabb AM, Wuerzberger-Davis SM, Miyamoto S (2006) PIASy mediates NEMO SUMOylation and NF-kappaB activation in response to genotoxic stress. Nat. Cell Biol. 8: 986-993 https://doi.org/10.1038/ncb1458
  23. Maccioni RB, Otth C, Concha II, Muoz JP (2001) The protein kinase Cdk5: Structural aspects, roles in neurogenesis and involvement in Alzheimer's pathology. Eur. J. Biochem. 268: 1518-1527 https://doi.org/10.1046/j.1432-1327.2001.02024.x
  24. Vassileva MT, Matunis MJ (2004) SUMO Modification of Heterogeneous Nuclear Ribonucleoproteins. Mol. Cell. Biol. 24: 3623-3632 https://doi.org/10.1128/MCB.24.9.3623-3632.2004
  25. Melchior F, Hengst L (2002) SUMO-1 and p53. Cell Cycle 1: 245-249
  26. Pichler A, Gast A, Seeler JS, Dejean A, Melchior F (2002) The nucleoporin RanBP2 has SUMO1 E3 ligase activity. Cell 108: 109-120 https://doi.org/10.1016/S0092-8674(01)00633-X
  27. Raynaud F, Marcilhac A (2006) Implication of calpain in neuronal apoptosis. A possible regulation of Alzheimer's disease. FEBS J. 273: 3437-3443 https://doi.org/10.1111/j.1742-4658.2006.05352.x
  28. Raynaud F, Marcilhac A (2006)Implication of calpain in neuronal apoptosis. A possible regulation of Alzheimer's disease. FEBS J. 273: 3437-3443 https://doi.org/10.1111/j.1742-4658.2006.05352.x
  29. Sampson DA, Wang M, Matunis MJ (2001) The small ubiquitinlike modifier-1 (SUMO-1) consensus sequence mediates Ubc9 binding and is essential for SUMO-1 modification. J. Biol. Chem. 276: 21664-21669 https://doi.org/10.1074/jbc.M100006200
  30. Shalizi A, Gaudilliere B, Yuan Z, Stegmuller J, Shirogane T, Ge Q, Tan Y, Schulman B, Harper JW, Bonni A (2006) A calcium-regulated MEF2 SUMOylation switch controls postsynaptic differentiation. Science 311: 10121017
  31. Shimura H, Schwartz D, Gygi SP, Kosik, KS (2004) CHIP-Hsc70 complex ubiquitinates phosphorylated tau and enhances cell survival, J. Biol. Chem. 279: 4869-4876 https://doi.org/10.1074/jbc.M305838200
  32. Suico MA, Nakamura H, Lu Z, Saitoh H, Shuto T, Nakao M, Kai H (2006) SUMO down-regulates the activity of Elf4/myeloid Elf-1-like factor. Biochem. Biophys. Res. Commun. 348: 880- 888 https://doi.org/10.1016/j.bbrc.2006.07.151
  33. Takashima A (2006) GSK-3 is essential in the pathogenesis of Alzheimer's disease. J. Alzheimers Dis. 9: 309-317 https://doi.org/10.3233/JAD-2006-9S335
  34. van Waardenburg RC, Duda DM, Lancaster CS, Schulman BA, Bjornsti MA (2006) Distinct functional domains of Ubc9 dictate cell survival and resistance to genotoxic stress. Mol. Cell Biol. 26: 4958-4969 https://doi.org/10.1128/MCB.00160-06
  35. Wilson VG, Rangasamy D (2001) Intracellular targeting of proteins by sumoylation. Exp. Cell Res.271: 57-65 https://doi.org/10.1006/excr.2001.5366
  36. Yang SH, Galanis A, Witty J, Sharrocks AD (2006) An extended consensus motif enhances the specificity of substrate modification by SUMO. EMBO J. 1-11 (Epub ahead of print)
  37. Zhang, H., H. Saitoh, and M. J. Matunis (2002) Enzymes of the SUMO modification pathway localize to filaments of the nuclear pore complex. Mol. Cell. Biol. 22: 6498-6508 https://doi.org/10.1128/MCB.22.18.6498-6508.2002