초록
센서네트워크 중에는 센서노드들이 넓은 지역에 걸쳐 정해진 위치에 산재되어야 하는 경우가 있다. 이런 경우 센서노드들을 interconnect하기 위한 최소개수의 연결노드들을 추가하는 문제가 대두되며, 이는 The Minimum number of Steiner Points라는 추상화된 문제로 귀결된다. 이 문제는 NP-hard 문제이므로, 본 논문에서는 문제가 내포하는 기하학적인 성질을 이용하여 연결노드의 최소개수에 근접하는 방안을 제시한다. 센서네트워크에서 노드의 개수를 줄임으로써 네트워크 내부에서 오가는 메시지의 교환량이 대폭 감소하게 된다.
In some wireless sensor networks, the sensor nodes are required to be located sparsely at designated positions over a wide area, introducing the problem of adding minimum number of relay nodes to interconnect the sensor nodes. The problem finds its form in literature: the Minimum number of Steiner Points. Since it is known to be NP-hard, this paper proposes an approximation scheme to estimate the minimum number of relay nodes through the properties of the abstract from. Reducing the number of nodes in a sensor network, the amount of data exchange over the net will be far decreased.