Sulfonated Dextran/Poly(vinyl alcohol) Polymer Electrolyte Membranes for Direct Methanol Fuel Cells

  • Won, Jong-Ok (Department of Applied Chemistry, Sejong University) ;
  • Ahn, Su-Mi (Department of Applied Chemistry, Sejong University) ;
  • Cho, Hyun-Dong (Department of Applied Chemistry, Sejong University) ;
  • Ryu, Ji-Young (Fuel Cell Research Center, Korea Institute of Science and Technology) ;
  • Ha, Heung-Yong (Fuel Cell Research Center, Korea Institute of Science and Technology) ;
  • Kang, Yong-Soo (Division of Chemical Engineering, Hangyang University)
  • 발행 : 2007.08.31

초록

Polymer electrolyte membranes, featuring ionic channels, were prepared from sulfonated dextran/ poly(vinyl alcohol) (sD/PVA) membranes. A stiff sulfated dextran was chosen as the route for ionic transport, since ionic sites are located along the stiff dextran main chain. The sD/PVA blend membranes were annealed and then chemically crosslinked. The characteristics of the crosslinked sD/PVA membranes were investigated to determine their suitability as proton exchange membranes. The proton conductivity was found to increase with increasing amounts of sD inside the membrane, which reached a maximum and then decreased when the sD content exceeded 30 wt%, while the methanol permeability increased with increasing sD content. The good dispersion of sD inside the membrane, which serves as an ionic channels mimic, played a significant role in proton transportation.

키워드

참고문헌

  1. V. Tricolo, N. Carretta, and M. Bartolozzi, J. Electrochem. Soc., 147, 1286 (2000)
  2. K. D. Kreuer, Chem. Mater., 8, 610 (1996)
  3. M. Rikukawa and K. Sanui, Prog. Polym. Sci., 25, 1463 (2000) https://doi.org/10.1016/S0079-6700(00)00032-0
  4. J. Won and Y. S. Kang, Macromol. Symp., 204, 79 (2003)
  5. R. W. Kopitzke, C. A. Linkous, H. R. Anderson, and G. L. Melson, J. Electrochem. Soc., 147, 1677 (2000)
  6. M. Kawahara, M. Rikekawa, K. Sanui, and N. Ogata, Solid State Ionics, 136, 1193 (2000)
  7. B. Gupta, F. N. Büchi, and G. G. Scherer, Solid State Ionics, 61, 213 (1993)
  8. P. L. Shao, K. A. Mauritz, and R. B. Moore, Chem. Mater., 7, 192 (1995) https://doi.org/10.1021/cm00053a028
  9. D. H. Jung, S. Y. Cho, D. H. Peck, D. R. Shin, and J. S. Kim, J. Power Sources, 118, 205 (2003)
  10. S.-O. Kim and J. S. Kim, Macromol. Res., 10, 174 (2002)
  11. H. D. Cho, J. Won, H. Y. Ha, and Y. S. Kang, Macromol. Res., 14, 214 (2006) https://doi.org/10.1007/BF03218512
  12. G.-L. Yuan and N. Kuramoto, Macromolecules, 36, 7939 (2003)
  13. W. S. Dai and T. A. Barbari, J. Membr. Sci., 156, 67 (1999)
  14. J. Won, H. H. Park, Y. J. Kim, S. W. Choi, H. Y. Ha, I.-H. Oh, H. S. Kim, Y. S. Kang, and K. J. Ihn, Macromolecules, 36, 3228 (2003)
  15. J. Won, S. W. Choi, Y. S. Kang, H. Y. Ha, I.-H. Oh, H. S. Kim, K. T. Kim, and W. H. Jo, J. Membr. Sci., 214, 245 (2003)
  16. Y. Woo, S. Y. Oh, Y. S. Kang, and B. Jung, J. Membr. Sci., 220, 31 (2003)
  17. J. Kim, B. Kim, B. Jung, Y. S. Kang, H. Y. Ha, I.-H. Oh, and K. J. Ihn, J. Macromol. Rapid Commun., 23, 375 (2002)
  18. V. Tricoli, J. Electrochem. Soc., 145, 3798 (1998)
  19. N. Carretta, V. Tricoli, and F. Picchioni, J. Membr. Sci., 166, 189 (2000)
  20. M.-S. Kang, J. H. Kim, J. Won, S.-H. Moon, and Y. S. Kang, J. Membr. Sci., 247, 127 (2005)
  21. M.-S. Kang, Y.-J. Choi, and S.-H. Moon, J. Membr. Sci., 207, 157 (2002)
  22. J. H. Son, Y. S. Kang, and J. Won, J. Membr. Sci., 281, 345 (2006)
  23. M. A. Vargas, R. A. Vargas, and B.-E. Mellander, Electrochim. Acta, 44, 4227 (1999)