Surface Hydrolysis of Fibrous Poly(${\epsilon}$-caprolactone) Scaffolds for Enhanced Osteoblast Adhesion and Proliferation

  • Park, Jeong-Soo (Department of Orthopaedic Surgery, Kangnam St. Mary's Hospital, College of Medicine, The Catholic University of Korea) ;
  • Kim, Jung-Man (Department of Orthopaedic Surgery, Kangnam St. Mary's Hospital, College of Medicine, The Catholic University of Korea) ;
  • Lee, Sung-Jun (Department of Nano Technology, Advanced Nano Materials Research Team, Daegu Gyeongbuk Institute of Science & Technology) ;
  • Lee, Se-Geun (Department of Nano Technology, Advanced Nano Materials Research Team, Daegu Gyeongbuk Institute of Science & Technology) ;
  • Jeong, Young-Keun (Hybrid Materials Solution National Core Research Center (NCRC), Pusan National University) ;
  • Kim, Sung-Eun (Nanomaterials Application Division, Korea Institute of Ceramic Engineering and Technology) ;
  • Lee, Sang-Cheon (Nanomaterials Application Division, Korea Institute of Ceramic Engineering and Technology)
  • Published : 2007.08.31

Abstract

A procedure for the surface hydrolysis of an electrospun poly(${\epsilon}$-caprolactone) (PCL) fibrous scaffold was developed to enhance the adhesion and proliferation of osteoblasts. The surface hydrolysis of fibrous scaffolds was performed using NaOH treatment for the formation of carboxyl groups on the fiber surfaces. The hydrolysis process did not induce deformation of the fibers, and the fibers retained their diameter. The cell seeding density on the NaOH-treated PCL fibrous scaffolds was more pronounced than on the non-treated PCL fibers used as a control. The alkaline phosphatase activity, osteocalcin and a mineralization assay strongly supported that the surface-hydrolyzed PCL fibrous scaffolds provided more favorable environments for the proliferation and functions of osteoblasts compared to the non-treated PCL fibrous scaffolds use as a control.

Keywords

References

  1. E. Luong-Van, L. Grondahl, K. N. Chua, K. W. Leong, V. Nurcombe, and S. M. Cool, Biomaterials, 27, 2042 (2006)
  2. D. S. Katti, K. W. Robinson, F. K. Ko, and C. T. Laurencin, J. Biomed. Mater. Res., 70B, 286 (2004)
  3. K. Kim, Y. K. Luu, C. Chang, D. F. Fang, B. S. Hsiao, B. Chu, and M. Hadjiargyrou, J. Control. Release, 98, 47 (2004)
  4. J. Zeng, X. Xu, X. Chen, Q. Liang, X. Bian, L. Yang, and X. Jing, J. Control. Release, 92, 227 (2003)
  5. E. Kenawy, G. L. Bowlin, K. Mansfield, J. Layman, D. G. Simpson, E. H. Sanders, and G. E. Wnek, J. Control. Release, 81, 57 (2002)
  6. G. Verreck, I. Chun, J. Rosenblatt, J. Peeters, A. V. Dijck, J. Mensch, M. Noppe, and M. E. Brewster, J. Control. Release, 92, 349 (2003)
  7. Y. K. Luu, K. Kim, B. S. Hsiao, B. Chu, and M. Hadjiargyrou, J. Control. Release, 89, 341 (2003)
  8. W. Cui, X. Li, X. Zhu, G. Yu, S. Zhou, and J. Weng, Biomacromolecules, 7, 1623 (2006) https://doi.org/10.1021/bm050485p
  9. C. L. Casper, N. Yamaguchi, K. L. Kiick, and J. F. Rabolt, Biomacromolecules, 6, 1998 (2005)
  10. H. Park, K. Y. Lee, S. J. Lee, K. E. Park, and W. H. Park, Macromol. Res., 15, 238 (2007) https://doi.org/10.1007/BF03218782
  11. H. Yoshimoto, Y. M. Shina, H. Terai, and J. P. Vacanti, Biomaterials, 24, 2077 (2003) https://doi.org/10.1016/S0142-9612(02)00221-1
  12. J. Chen, B. Chu, and B. S. Hsiao, J. Biomed. Mater. Res. Part A, 79A, 307 (2006) https://doi.org/10.1002/jbm.a.30739
  13. M. C. Serrano, M. T. Portoles, M. Vallet-Regi, I. Izquierdo, L. Galletti, J. V. Comas, and R. Pagani, Macromol. Biosci., 5, 415 (2005)
  14. K. H. Lee, H. Y. Kim, M. S. Khil, Y. M. Ra, and D. R. Lee, Polymer, 44, 1287 (2003)
  15. Y. Zhu, M. F. Leong, W. F. Ong, M. B. Chan-Park, and K. S. Chian, Biomaterials, 28, 861 (2007)
  16. W. J. Li, J. A. Cooper, Jr., R. L. Mauck, and R. S. Tuan, Acta. Biomater., 2, 377 (2006)
  17. G. Ciapetti, L. Ambrosio, L. Savarino, D. Granchi, E. Cenni, N. Baldini, S. Pagani, S. Guizzardi, F. Causa, and A. Giunti, Biomaterials, 24, 3815 (2003) https://doi.org/10.1016/S0142-9612(02)00221-1
  18. S. E. Kim, H. K. Rha, S. Surendran, C. W. Han, S. C. Lee, H. W. Choi, Y.-W. Choi, K.-H. Lee, J. W. Rhie, and S. T. Ahn, Macromol. Res., 14, 565 (2006) https://doi.org/10.1007/BF03218725
  19. Z. Cheng and S. H. Teoh, Biomaterials, 25, 1991 (2004)
  20. Y. Zhu, C. Gao, and J. Shen, Biomaterials, 23, 4889 (2002)
  21. G. E. Parka, M. A. Pattisona, K. Park, and T. J. Webster, Biomaterials, 26, 3075 (2005)
  22. J. Gao, L. Niklason, and R. Langer, J. Biomed. Mater. Res., 42, 417 (1998)
  23. H. M. Kowalczynska and J. Kaminski, J. Cell Sci., 99, 587 (1991)
  24. A. Curtis and J. Forrester, J. Cell Sci., 71, 17 (1984)
  25. S. S. Kim, M. S. Park, O. Jeon, C. Y. Choi, and B. S. Kim, Biomaterials, 27, 1399 (2006)
  26. K. Y. Lee, E. Alsberg, S. Hsiong, W. Comisar, J. Linderman, R. Ziff, and D. Mooney, Nano. Lett., 4, 1501 (2004)