References
- Basu, S. and Lindsay, B. G. (1994). Minimum disparity estimation for continuous models: efficiency, distributions and robustness. Annals of the Institute of Statistical Mathematics, 46, 683-705 https://doi.org/10.1007/BF00773476
- Basu, A., Harris, I. R., Hjort, N. L. and Jones, M. C. (1998). Robust and efficient estimation by minimizing a density power divergence. Biometrika, 85, 549-559 https://doi.org/10.1093/biomet/85.3.549
- Beran, R. (1977). Minimum Hellinger distance estimates for parametric models. The Annals of Statistics, 5, 445-463 https://doi.org/10.1214/aos/1176343842
- Cao, R., Cuevas, A. and Fraiman, R. (1995). Minimum distance density-based estimation. Computational Statistics & Data Analysis, 20, 611-631 https://doi.org/10.1016/0167-9473(94)00065-4
- Dacunha-Castelle, D. and Florens-Zmirou, D. (1986). Estimation of the coefficients of a diffusion from discrete observations. Stochastics, 19, 263-284 https://doi.org/10.1080/17442508608833428
- Florens-Zmirou, D. (1989). Approximate discrete-time schemes for statistics of diffusion processes. Statistics, 20, 547-557
- Friedman, A. (1975). Stochastic Differential Equations and Applications. Academic Press, INC
- Genon-Catalot, V. and Jacod, J. (1993). On the estimation of the diffusion coefficient for multidimensional diffusion processes. Annales Institut Henri Poincare Probabilites et Statistiques, 29, 119-151
- Hong, C. and Kim, Y. (2001). Automatic selection of the tuning parameter in the minimum density power divergence estimation. Journal of the Korean Statistical Society, 30, 453-465
- Ibragimov, I. A. and Has'minskii, R. Z. (1981). Statistical Estimation Asymptotic Theory. Springer-Verlag, New York
- Kessler, M. (1997). Estimation of an ergodic diffusion from discrete observations. Scandinavian Journal of Statistics, 24, 211-229 https://doi.org/10.1111/1467-9469.00059
- Kessler, M. (2000). Simple and explicit estimating functions for a discretely observed diffusion process. Scandinavian Journal of Statistics, 27, 65-82 https://doi.org/10.1111/1467-9469.00179
- Kessler, M. and Serensen, M. (1999). Estimating equations based on eigenfunctions for a discretely observed diffusion process. Bernoulli, 5, 299-314 https://doi.org/10.2307/3318437
- Kutoyants, Y. (2004). Statistical Inference for Ergodic Diffusion Processes. Springer-Verlag, New York
- Lee, S. and Na, O. (2005). Test for parameter change based on the estimator minimizing density-based divergence measures. Annals of the Institute of Statistical Mathematics, 57, 553-573 https://doi.org/10.1007/BF02509239
- Lee, S. and Song, J. (2006). Minimum density power divergence estimator for diffusion processes. submitted for publication
- Prakasa Rao, B. L. S. (1999). Statistical Inference for Diffusion Type Processes. Arnold, London
- Masuda, H. (2005). Simple estimators for parametric Markovian trend of ergodic processes based on sampled data. Journal of The Japan Statistical Society, 35, 147-170 https://doi.org/10.14490/jjss.35.147
- Simpson, D. G. (1987). Minimum Hellinger distance estimation for the analysis of count data. Journal of the American Statistical Association, 82, 802-807 https://doi.org/10.2307/2288789
- Song, J. and Lee, S. (2006). Test for parameter change in discretely observed diffusion processes. submitted for publication
- Tamura, R. N. and Boos, D. D. (1986). Minimum Hellinger distance estimation for multivariate location and covariance. Journal of the American Statistical Association, 81, 223-239 https://doi.org/10.2307/2287994
- Warwick, J. and Jones, M. C. (2005). Choosing a robustness tuning parameter. Journal of Statistical Computation and Simulation, 75, 581-588 https://doi.org/10.1080/00949650412331299120
- Yoshida, N. (1992). Estimation for diffusion processes from discrete observation. Journal of Multivariate Analysis, 41, 220-242 https://doi.org/10.1016/0047-259X(92)90068-Q