DOI QR코드

DOI QR Code

BOUNDED SOLUTIONS FOR THE $SCHRËDINGER OPERATOR ON RIEMANNIAN MANIFOLDS

  • Kim, Seok-Woo (DEPARTMENT OF MATHEMATICS EDUCATION KONKUK UNIVERSITY) ;
  • Lee, Yong-Hah (DEPARTMENT OF MATHEMATICS EDUCATION EWHA WOMANS UNIVERSITY)
  • Published : 2007.08.31

Abstract

Let M be a complete Riemannian manifold and L be a $Schr\"{o}dinger$ operator on M. We prove that if M has finitely many L-nonparabolic ends, then the space of bounded L-harmonic functions on M has the same dimension as the sum of dimensions of the spaces of bounded L-harmonic functions on the L-nonparabolic end, which vanish at the boundary of the end.

Keywords

References

  1. A. A. Grigor'yan, On the set of positive solutions of the Laplace-Beltrami equation on Riemannian manifolds of a special form, Izv. Vyssh. Uchebn. Zaved., Matematika (1987), no. 2, 30-37: English transl. Soviet Math. (Iz, VUZ) 31 (1987), no. 2, 48-60
  2. A. A. Grigor'yan, On Liouville theorems for harmonic functions with ?nite Dirichlet integral, (In Russian) Matem. Sbornik 132 (1987), no. 4, 496-516: English transl. Math. USSR Sbornik 60 (1988), no. 2, 485-504
  3. A. A. Grigor'yan, Dimensions of spaces of harmonic functions, Mat. Zametki 48 (1990), no. 5, 55-61; translation in Math. Notes 48 (1990), no. 5-6, 1114-1118
  4. A. A. Grigor'yan and W. Hansen, Liouville property for SchrAodinger operators, Math. Ann. 312 (1998), no. 4, 659-716 https://doi.org/10.1007/s002080050241
  5. S. W. Kim and Y. H. Lee, Generalized Liouville property for SchrAodinger operator on Riemannian manifolds, Math. Z. 238 (2001), no. 2, 355-387 https://doi.org/10.1007/s002090100257
  6. S. W. Kim and Y. H. Lee, Rough isometry and energy finite solutions for the SchrAodinger operator on Riemannian manifolds, Proc. Roy. Soc. Edinburgh Sect. A 133 (2003), no. 4, 855-873
  7. P. Li and L-F. Tam, Positive harmonic functions on complete manifolds with nonnegative curvature outside a compact set, Ann. of Math. (2) 125 (1987), no. 1, 171-207 https://doi.org/10.2307/1971292
  8. P. Li and L-F. Tam, Harmonic functions and the structure of complete manifolds, J. Differential Geom. 35 (1992), no. 2, 359-383 https://doi.org/10.4310/jdg/1214448079
  9. C. J. Sung, L. F. Tam and J. Wang, Spaces of harmonic functions, J. London Math. Soc. (2) 61 (2000), no. 3, 789-806 https://doi.org/10.1112/S0024610700008759
  10. S. T. Yau, Harmonic functions on complete Riemannian manifolds, Comm. Pure Appl. Math. 28 (1975), 201-228 https://doi.org/10.1002/cpa.3160280203