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BOUNDED SOLUTIONS FOR THE SCHRODINGER
OPERATOR ON RIEMANNIAN MANIFOLDS

SEOK W00 KiM AND YONG HAH LEE

ABSTRACT. Let M be a complete Riemannian manifold and £ be a Schro-
dinger operator on M. We prove that if M has finitely many £-nonpara-
bolic ends, then the space of bounded L£-harmonic functions on M has
the same dimension as the sum of dimensions of the spaces of bounded
L-harmonic functions on each L-nonparabolic end, which vanish at the
boundary of the end.

1. Introduction

Let M be a complete Riemannian manifold and £ = A —V be a Schrodinger
operator on M, where A is the Laplacian on M and the potential V is a
nonnegative function on M. A function u on an open subset §2 of M is called an
L-solution (-supersolution, -subsolution, respectively,) on Q if Lu =0 (<0, >
0, respectively,) on Q. This equation is understood in the sense of distribution.
We say that a function u is £-harmonic on @ if u is a continuous £-solution
on . In the case when the potential term V of the Schrédinger operator £ is
continuous, one can achieve the continuity of £L-solutions. More generally, such
a result can be extended to potentials in the local Kato class. (See [4].)

This paper is motivated by the previous works of present authors [5] and [6].
By the result of [5], the dimension of the space of bounded £-harmonic functions
on a complete Riemannian manifold is equal to the number of L-nonparabolic
ends in the case when each L-nonparabolic end is regular. On the other hand,
the present authors in [6] proved that the dimension of the space of bounded
energy finite £-harmonic functions on a complete Riemannian manifold is equal
to the maximal number of £-massive subsets of the manifold. In this paper,
we propose the space of bounded L£-harmonic functions on ends of a complete
Riemannian manifold and give the relation between the space of bounded £-
harmonic functions on the whole manifold and those of its ends. In particular,
we prove that the dimension of the space of bounded £-harmonic functions on

Received January 12, 2007.

2000 Mathematics Subject Classification. 58J05, 35J10.

Key words and phrases. Schrédinger operator, £-harmonic function, £-massive set, end.

The first author was supported by grant No. R01-2006-000-10047-0(2007) from the Basic
Research Program of the Korea Science & Engineering Foundation.

©2007 The Korean Mathematical Society

507



508 SEOK WOO KIM AND YONG HAH LEE

the whole manifold is equal to the sum of dimension of the spaces of bounded
L-harmonic functions on its ends as follows:

Theorem 1.1. Let M be a complete Riemannian manifold and L = A -V,
where A denotes the Laplacian on M and V is a nonnegative continuous func-
tion on M. Let E,E,,...,E;, 1 > 1, be L-nonparabolic ends of M. Then
HB-(M) has the same dimension as the dimension of Hizl’HB’g(Ei,@Ei),
where HB£(X) and HB:(X,0X) denote the space of bounded L-harmonic
functions on X and the subspace of elements of HBz(X) vanishing at 0X,
respectively.

In particular, in the case when HB.(M) is finite dimensional, there exists

an isomorphism
1

®: HB:(M) — || HB.(E:, OF;).
i=1
In the case when the potential term of the Schrédinger operator is identically
zero, L£-harmonic functions become harmonic functions. Therefore, this result
partially generalizes those of Yau [10], of Grigor’yan (1], [2], [3], of Li-Tam [7],
[8] and of Sung- Tam-Wang [9].

2. L-massivity and bounded L-harmonic functions on manifolds

Let M be a complete Riemannian manifold and o be a fixed point in M.
Throughout this paper, A always denotes the Laplacian on M and V is a
nonnegative continuous function on M. Also £ = A —V denotes a Schrédinger
operator on M.

An open proper subset 0 C M is said to be L-massive if there exists a
continuous function w on M such that 0 < w <1 on M,

Lw=0 on £;
w=0 on M\
supow = 1.

Such a function w is called an inner potential of .
Arguing similarly as in [3], we get the following useful properties of £-massive
sets:

Proposition 2.1. Suppose Q' C Q are open proper subsets of a complete Rie-
mannian manifold and L= A -V . Then

(i) of ' is L-massive, then  is also L-massive;

(ii) if Q is L-massive and Q\ & is compact, then Q' is also L-massive.

We denote by B(M) the space of all bounded continuous functions on M.
Let HB; (M) denote the subspace of all £L-harmonic functions in B(M). Then
we can prove that the dimension of HB, (M) is equal to the supremum of the
number of mutually disjoint £-massive subsets of M as follows:
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Theorem 2.2. Let M be a complete Riemannian manifold and L = A - V.
Then for each m € N, dimHBz(M) > m if and only if there ezist mutually
disjoint L-massive subsets 21, Qa,..., 0, of M.

Proof. Let Q;,89,...,Q,, be the mutually disjoint £-massive subsets of M
and w; be an inner potential of £; for each i = 1,2,...,m. Then for each
t=1,2,...,m and r > 0, define a continuous function f;, on B,(0) such that

L fir=0 on B.(0);
fi,r =w; Oon aBr(O) N Qy;
fir=0 ondB.(o)\Q,

where B,(0) denotes the metric r-ball centered at 0. By the comparison prin-
ciple, w; < fir < 1 on By(o). Since fi, > w; = fir on dB.(0) for v’ > r,
we have f; . > fi, on B.(o). Thus {f;,} is increasing in r, hence has a
limit function f;. In particular, f; is an £-harmonic function on M satisfying
0 <w; < f; £ 1. Since supg, w; = 1, we have supq, f; = 1.

On the other hand, since 1, Qq,...,Q,, are mutually disjoint, Y - w; =

_max w;, hence supy, Sy w; = land supy, Y10, fi = 1. Since supg, w; =
i=1,2,..., m

1, there is a sequence {z; n}neN in €; such that limy,_, o0 w;(z;,n) = 1 for each
i =1,2,...,m. From the fact that 0 < w; < f; < 1 and >7*, f; < 1, the
sequence {z; ,} satisfies

(2.1) lim fj(xi,n) = 51-3-
n—0o0
for each i = 1,2,...,m, where 9;; is Kronecker’s delta.

Suppose that
arfitafo+ - +amfm=0
for some a1,a2,...,0,; € R. Then (2.1) implies that a; = 0 for each i =
1,2,...,m, hence f1, fo,..., fin are linearly independent. Consequently,

dim HB.(M) > m.

Conversely, suppose that dim HB,(M) > m. Then there exist linearly in-
dependent £-harmonic functions uy,us, ..., %y, in HBz(M). Let M be the
Stone-Cech compactification of M and 8M = M \ M. Then every function
u € B(M) can be extended to a continuous function %@ on M.

We can extend u; to w; on M in such a way that ;|,y,, denoted by f;, is
continuous on OM. By using the linear independence of u1,us,. .., u,, and the
comparison principle, fi, f2,..., fm are also linearly independent. Then there
exist continuous functions Fy, Fy, ..., F},, each of which is a linear combina-
tion of fi, f2,..., fm and is not identically zero, such that {z € M : Fi(z) =
max, Fi}’s are mutually disjoint. (See [3].) Since each F; is a linear combi-
nation of f1, fo,..., fm, there exists a linear combination v; of @y, %Us,...,Um
such that v; = F; on M. We may assume that maxgy; F; > 0 for each
¢ =12,...,m. For given € > 0, put Q5 = {x € M : v(x) > maxyy F; —€}.
Then Qf is an L-massive subset of M.
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We claim that Qf’s are mutually disjoint for sufficiently small ¢ > 0. If this
is not the case, then for some 7 # j, there exists a sequence {€,}nen Such
that limp o0 €, = 0 and Q5" N Qj-" # () for all n € N. Let z,, € 2" N Q§"
for each n € N. Since M is compact, there exists a convergent subsequence
{2n, }ren With a limit point, say zo € M, as k — oo. Clearly, we have v;(2¢) =
maxgy; Fi = supv; and v;(xp) = max,y F; = supv;. If zp € M, then by
the maximum principle, we have a contradiction. If zo € M, then v;(zo) =
max,y F; and vj(zo) = max,y; Fj, i.e., 2o is a common maximum point of F;
and Fj, which is a contradiction. This proves the claim. O

By constructing a basis from inner potentials of £-massive subsets of a com-
plete Riemannian manifold, we can explicitly describe the space of bounded
L-harmonic functions on the manifold as follows:

Theorem 2.3. Let M be a complete Riemannian manifold whose mazimal
number of mutually disjoint L-massive subsets is m € N, where L = A -V,
Suppose Q1, o, ..., Q. are mutually disjoint L-massive subsets of M. Let w;
be an inner potential of ; for each it =1,2,...,m. Then we can construct a
basis {f1, fay -y fm} for HBp(M) such that

) 0<w; <fi <lon§y foreachi=1,2,...,m;

(i) supp Yoimy fi = 1.

In particular, for given real numbers ay,az,...,a, € R, there exists an
L-harmonic function h € HB-(M) such that for eachi=1,2,...,m,
(2.2) lim h(z;n) = a;,
n—oo

where {x; n }neN is a sequence in Q; satisfying (2.1).
Conversely, each L-harmonic function h € HB-(M) is uniquely determined
by the values in (2.2).

Proof. Since the maximal number of mutually disjoint £-massive subsets con-
tained in M is m, by Theorem 2.2, dim HB-(M) = m. Let Q1,Q9,...,Q, be
the mutually disjoint £-massive subsets of M and w; be an inner potential of
Q; foreach i =1,2,...,m. Then one can check that the bounded £-harmonic
functions f;, fo, ..., fm constructed in the proof of Theorem 2.2 form a basis
for HB-(M) satisfying

() 0<w; <f;i<lonforeachi=1,2,...,m;

(i) supy 3272, fi=1.

For given real numbers a1,as,...,a, € R, define h = Z;n:l a;f;. Then

since the sequence {z; , } satisfies (1), we have

lim h(z;,) = E a; Hm fi(zin) E a;0;; = a;
n—o0 n—00

foreachi=1,2,...,m.
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Conversely, let h be a function in HB;(M) satisfying (2.2). Clearly, a
bounded L-harmonic function Z;nzlaj f; also satisfies (2.2). Putting ¢ =
h— E;"zl a;f;, there exist c1,co,...,cm € R such that g = Z;"zl ¢;f;. Then
from the definition of {z; ,}, we have

m m

C; = nlLII;o g(:viyn) = nlLH;o h(l'i,'n,) - Zlaj nh—{EO fj (wi,n) =a; — 2; ajéij =0
j= j=

for each i = 1,2,...,m. This implies that g =0 on M, i.e., h = Z;n:1 a; f; on

M. O

3. L-massivity and bounded £-harmonic functions on ends

Let M be a complete Riemannian manifold and o be a fixed point in M.
We denote by #(r) the number of unbounded components of M \ B,(0). It is
easy to prove that #(r) is nondecreasing in r > 0. Let lim,_,f#(r) = I, where
! may be infinity, then we say that the number of ends of M is [. If I is finite,
then we can choose ro > 0 in such a way that §(r) = [ for all » > ro. In
this case, there exist mutually disjoint unbounded components E1, Es, ..., E;
of M \ B,,(0) and we call each E; an end of M for ¢ = 1,2,...,l. We say
that an end E of M is L-nonparabolic if there exists a continuous function u g,
called an £-harmonic measure, on E \ B;, (o) for some r; > ry such that

Lug=0 on E\ B, (o);
ug =0 on 0B, (o) N E;
SUPE\B,, (0)UE = 1.

Otherwise, E is called an L-parabolic end.

For an end E of M, HB.(E,3E) denotes the space of all L-harmonic func-
tions on E vanishing at JE. Let Qq,82,...,8; be the mutually disjoint £L-
massive subsets of E and w; be an inner potential of ; foreachi=1,2,...,s.
For each i = 1,2,...,s and sufficiently large r > r1, define a continuous func-
tion g; » on B,(0) N E such that

Lgr=0 on B(o)NE;
gir =w; on (0B.(0)NE)NQy;
gir =0 on JF;
gir=0 on (0B,(0)NE)\ Q.

By the comparison principle, {g; -} is increasing in r, hence has a limit function
gi- In particular, ¢1,92,...,9s are linearly independent bounded £-harmonic
functions on F, each of which satisfies
() 0<w; <g: <14
(i) supq, gs = 1;
(iil) supg Y i, 9i = 1.
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These together with the assumption that Q1,Qs,...,Q; are the mutually dis-
joint L£-massive sets imply that for each 1 = 1,2,...,s, there exists a sequence
{Zin}nen in Q; such that

(3.1) lim g;(x;,) = ;.

Arguing similarly as in the proof of Theorem 2.2, we have the following
theorem:

Theorem 3.1. Let E be an end of a complete Riemannian manifold and £ =
A —~V. Then for each s € N, dimHB.(F,0F) > s if and only if there exist
mutually disjoint L-massive subsets Q1, Qq,...,Q; of E.

Suppose that the maximal number of mutually disjoint £-massive subsets
contained in E is s € N. Then, by Theorem 3.1, dim HB.(E,JF) = s. Arguing
similarly as in the proof of Theorem 2.3, we have the following theorem:

Theorem 3.2. Let E be an end of a complete Riemannian manifold, whose
mazimal number of mutually disjoint L-massive subsets in E is s € N, where
L=A-V. Suppose Qq, Qo,...,Qs are mutually disjoint L-massive subsets
of E. Let w; be an inner potential of Q; for eachi=1,2,...,5. Then we can
construct a basis {g1,92,...,9s} for HB.(E,dE) such that

D0<w;<g<1onQ; foreachi=1,2,...,s;
(ii) supp Ef:l g =1

In particular, for given real numbers ay,as,...,as € R, there exists an L-
harmonic function h € HB.(E,OF) such that for eachi=1,2,...,s,
(32) lim h($i7n) = Q;,
N—0C

where {Z; n }nen 5 a sequence in Q; satisfying (3.1).
Conversely, each L-harmonic function h € HB(E,0F) is uniquely deter-
mined by the values in (3.2).

4. Proof of main results

In this section, we give the relation between the dimension of various spaces
of L£-harmonic functions on the whole manifold and those on its ends. To
begin with, we give a characterization of L-parabolicity of ends in terms of
L-massivity as follows:

Lemma 4.1. Suppose that the mazimeal number of mutually disjoint L-massive
subsets contained in M is m. Then we can choose mutually disjoint L-massive
subsets Q1,Qq,...,Qy, in such a way that for each ;, there exists an L-
nonparabolic end E such that Q; C E.

Proof. Let Q1,Q0,...,8,, be mutually disjoint £-massive subsets of M. We
claim that for each ¢ = 1,2,...,m, there exist an £-massive subset Q, C Q;
and an L-nonparabolic end E such that Qf C E.



BOUNDED SOLUTIONS FOR THE SCHRODINGER OPERATOR 513

By Proposition 2.1, ; \ B, (0), i = 1,2,...,m, is also L-massive. Let w;
be an inner potential of Q; \ B, (0). If an end E of M satisfies
(4.1) GMNE#0 and sup wi(z) >0,

zel NE

then Q;NFE is an L-massive subset of Q;. In this case, other ends cannot satisfy
the property (4.1). Otherwise, there is a contradiction to the maximality of the
number of mutually disjoint £-massive subsets of M. This implies that even if
there is another end E of M with Q; N E # 0, w; must be identically zero on
Q1 N E. Therefore,

Q) ={z € Q1 \ Bry(0) : wi(z) > 0}

is an L£-massive subset and E becomes an L-nonparabolic end, hence ) and
E are the desired ones.

Applying the above argument to other £-massive subsets €2;,1=2,3,...,m,
we have the claim. O

We are now ready to prove our main result.

Proof of Theorem 1.1. In the case that HBc(M) is infinite dimensional, by
Theorem 3.1, M can have infinitely many mutually disjoint L-massive subsets.
Then by Lemma 4.1, at least one end E of M must contain infinitely many mu-
tually disjoint £-massive subsets, since the number of ends of M is finite. Thus
for any m € N, there are mutually disjoint £-massive subsets €21,Q2,...,Q,,
of the end E. Then by Theorem 3.1, the dimension of the space of bounded £-
harmonic functions on the end E, which vanish at its boundary OF, is greater
than or equal to m. Since m € N is arbitrarily chosen, the function space
‘HB.(E,HE) is infinite dimensional.

Conversely, in the case that the function space HBz(E,dE) on an end F is
infinite dimensional, by Theorem 3.1, the end F has infinitely many mutually
disjoint L-massive subsets, hence so does M. By Theorem 2.2, this implies
that HB (M) is infinite dimensional.

Suppose that the dimension of HB-(M) is m € N. Then by Theorem 3.1
and Lemma 4.1, we can choose mutually disjoint £-massive subsets

01,95, Qhy, 01,08, , 9%, 91,95, Q)

where Q¢ Q% .. .,Qi(i) denote the mutually disjoint £-massive subsets con-
tained in E; for each ¢ = 1,2,...,1 and s(1) + s(2) + --- 4+ s(I) = m. This
implies that the maximal number of mutually disjoint £-massive subsets con-
tained in E; is s(2) for each i =1,2,...,l. Now let w; be an inner potential of
2 for each j = 1,2,...,5(i) and ¢ = 1,2,...,l. By Theorem 2.3, we can find
a basis
{fll’f21""’ 51(1)7fig?f22""7fs2(2)7"‘7f{’f£a""f‘é(l)}
for HBz (M) such that for j =1,2,...,s(i) and i = 1,2,...,1,
(i) 0<wi < fi<1;
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(i) supp Y1, 50 i = 1.

Since supg: w = 1, there exists a sequence {z% }nen in QF such that for each
ij j q in € j

i=12,...,s(f)andi=1,2,...,1, limy 00 wj(zJ ») = 1, hence

lim f ( ) - 6ik6'r'j-

n—oe
By Theorem 3.2, we can find a basis {g},d3,... ,gé(i)} for HB.(E;,0E;) such
that for j =1,2,...,s8(i) and i =1,2,...,1,

(i) 0L wl < gl <1
(ii) supp, z;“i g5 =
Since supgq: wj =1,
lim g(!,) = 6y
foreach 7 =1,2,...,s{i) and i = 1,2,...,1.

Let h be a function in HB,(M). Combining Theorem 2.3, Lemma 4.1 and
Theorem 3.2, we can construct a unique function h; in HB.(FE;, 8E;) in such
a way that

lim h; ( n) = lim h( )

for each j = 1,2,...,5(i). In fact, if h = 3\_, ng a’ f1, then h; =ng asgt.
Let us define @ : HBL(M) — [I.2, HB.(E:, OE;) by
®(h) = (hy, ha,. .., h1).

Then by the uniqueness of the £-harmonic functions hi, hs,. .., h;, the map ®
is well defined.
Clearly, the map  is linear.
Ifh=3", Z;S)l aifi € ker @, ie., ®(h) = (h1,ha,..., ) = (0,0,...,0),
then
hmh( )—hmh( n)=0

n—00 n—o0
for each j = 1,2,...,3(2’) and i =1,2,...,l. Hence h = 0 on M. Therefore,
the map @ is injective.
Let (hi,ha, ..., ) € [['_, HB.(E;:, E;). Then we may write

(1) s(2) s(l)

(hlahQ;"‘a (Za’g]7zag]> . 72(1/29;)
j=1

Let h=3"\_, 35 aifi. Then h € HBs(M) and ®(h) = (hi, ha, ..., hy), ie.,

j=1%;
the map ® is surjective. J

Arguing similarly as in the proof of Theorem 1.1, we get the same result in
the case of bounded energy finite £-harmonic functions as follows:
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Corollary 4.2. Let M be a complete Riemannian manifold and L = A=V . Let
E\,E,,...,E;, | > 1, be L-nonparabolic ends of M. Then HBD:(M) has the
same dimension as the dimension of Hﬁzl HBD(E;,0F;), where HBD(X)
and HBD;(X,0X) denote the space of bounded energy finite L-harmonic func-
tions on X and the subspace of elements of HBD:(X) vanishing at 0X, re-
spectively.

In particular, in the case when HBD (M) is finite dimensional, there exists
an isomorphism

l
®: HBD (M) — || HBD.(E:, OF;).
i=1
Applying our argument to the case of harmonic functions, we have the fol-
lowing isomorphism between the space of bournided harmonic functions (with
finite Dirichlet integral, respectively) on a complete Riemannian manifold and
the Cartesian product of those on its ends:

Corollary 4.3. Let M be a complete Riemannian manifold with nonparabolic
ends E1,Eo,...,E;, | > 1. Then HB(M) has the same dimension as the
dimension of Hizl HB(E;,dE;), where HB(X) and HB(X,0X) denote the
space of bounded harmonic functions on X and the subspace of elements of
HB(X) vanishing at DX, respectively.

In particular, in the case when HB(M) is finite dimensional, there exists an
tsomorphism

!
@ : HB(M) — [[ HB(E:, 0F).
i=1

Also, HBD(M) has the same dimension as that of Hﬁzl HBD(E;,0FE;),
where HBD(X) and HBD(X,0X) denote the space of bounded harmonic func-
ttons with finite Dirichlet integral on X and the subspace of elements of HBD(X)
vanishing at 80X, respectively.

In particular, in the case when HBD(M) is finite dimensional, there exists
an isomorphism

l
® : HBD(M) — || HBD(E:, OE:).

i=1
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