DOI QR코드

DOI QR Code

AN UPPER BOUND OF THE BASIS NUMBER OF THE SEMI-STRONG PRODUCT OF CYCLES WITH BIPARTITE GRAPHS

  • Published : 2007.08.31

Abstract

An upper bound of the basis number of the semi-strong product of cycles with bipartite graphs is given. Also, an example is presented where the bound is achieved.

Keywords

References

  1. A. A. Ali, The basis number of complete multipartite graphs, Ars Combin. 28 (1989), 41-49
  2. A. A. Ali and G. T. Marougi, The basis number of the Cartesian product of some graphs, J. Indian Math. Soc. (N.S.) 58 (1992), no. 1-4, 123-134
  3. S. Y. Alsardary and J. Wojciechowski, The basis number of the powers of the complete graph, Discrete Math. 188 (1998), no. 1-3, 13-25 https://doi.org/10.1016/S0012-365X(97)00271-9
  4. J. A. Bondy and U. S. R. Murty, Graph Theory with Applications, America Elsevier Publishing Co., Inc., New York, 1976
  5. W.-K. Chen, On vector spaces associated with a graph, SIAM J. Appl. Math. 20 (1971), 525-529
  6. W. Imrich and S. Klav.zar, Product Graphs, Structure and recognition. With a foreword by Peter Winkler. Wiley-Interscience Series in Discrete Mathematics and Optimization. Wiley-Interscience, New York, 2000
  7. M. M. M. Jaradat, On the basis number of the direct product of graphs, Australas. J. Combin. 27 (2003), 293-306
  8. M. M. M. Jaradat, The basis number of the strong product of trees and cycles with some graphs, J. Combin. Math. Combin. Comput. 58 (2006), 195-209
  9. M. M. M. Jaradat, An upper bound of the basis number of the strong product of graphs, Discuss. Math. Graph Theory 25 (2005), no. 3, 391-406 https://doi.org/10.7151/dmgt.1291
  10. M. M. M. Jaradat, The basis number of the direct product of a theta graph and a path, Ars Combin. 75 (2005), 105-111
  11. M. M. M. Jaradat and M. Y. Alzoubi, An upper bound of the basis number of the lexicographic product of graphs, Australas. J. Combin. 32 (2005), 305-312
  12. M. M. M. Jaradat and M. Y. Alzoubi, On the basis number of the semi-strong product of bipartite graphs with cycles, Kyungpook Math. J. 45 (2005), no. 1, 45-53
  13. S. MacLane, A combinatorial condition for planar graphs, Fundamenta Math. 28 (1937), 22-32
  14. E. F. Schmeichel, The basis number of a graph, J. Combin. Theory Ser. B 30 (1981), no. 2, 123-129 https://doi.org/10.1016/0095-8956(81)90057-5