DOI QR코드

DOI QR Code

PERIODIC SOLUTIONS OF A DISCRETE TIME NON-AUTONOMOUS RATIO-DEPENDENT PREDATOR-PREY SYSTEM WITH CONTROL

  • Zeng, Zhijun (ACADEMY OF MATHEMATICS AND SYSTEMS SCIENCES CAS)
  • Published : 2007.07.31

Abstract

With the help of the coincidence degree and the related continuation theorem, we explore the existence of at least two periodic solutions of a discrete time non-autonomous ratio-dependent predator-prey system with control. Some easily verifiable sufficient criteria are established for the existence of at least two positive periodic solutions.

Keywords

References

  1. R. Arditi, L. R. Ginzburg, Coupling in predator-prey dynamics: Ratio-dependence, J. Theoretical Biology 139 (1989), 311-326 https://doi.org/10.1016/S0022-5193(89)80211-5
  2. M. Fan and K. Wang, Periodic solutions of a discrete time nonautonomous ratiodependent predator-prey system, Math. Comput. Model 35 (2002), 951-961 https://doi.org/10.1016/S0895-7177(02)00062-6
  3. M. Fan, Q. Wang, and X. F. Zou, Dynamics of a nonautonomous ratio-dependent predator-prey system, Pro. Roy. Soc. Edinburgh Sect. A (2003), 97-118 https://doi.org/10.1017/S0308210500002304
  4. H. I. Freedman, Deterministic mathematical models in population ecology, Marcel Dekker, New York, 1980
  5. H. I. Freedman and R. M. Mathsen, Persistence in predator prey systems with ratiodependent predator-infiuence, Bull. Math. BioI. 55 (1993), 817-827 https://doi.org/10.1007/BF02460674
  6. R. E. Gaines and J. L. Mawhin, Coincidence degree and nonlinear differential equations, Springer-Verlag, Berlin, 1977
  7. B. S. Goh, Management and analysis of biological population, Elsevier Scientific, The Netherlands, 1980
  8. S. B. Hsu, T. W. Huang, and Y. Kuang, Global analysis of the Michaelis-Menten type ratio-dependent predator-prey system, J. Math. BioI. 42 (2003), 489-506 https://doi.org/10.1007/s002850100079
  9. S. B. Hsu, T. W. Huang, A ratio-dependent food chain model and its applications to biological control, J. Math. BioI. 181 (2003), 55-83 https://doi.org/10.1016/S0025-5564(02)00127-X
  10. J. D. Murry, Mathematical biology, Springer-Verlag, New York, 1989
  11. B. Daya Reddy, Introductory functional analysis: with applications to boundary value problems and finite elements, Springer-Verlag, 1997
  12. D. S. Tian and X. W. Zeng, Existence of at least two periodic solutions of a ratiodependent predator-prey model with exploited term, Acta Math. Appl. Sin, English series 21 (2005), no. 3, 489-494 https://doi.org/10.1007/s10255-005-0256-5
  13. Qian Wang, Meng Fan, and Ke Wang, Dynamics of a class of nonautonomous semiratio-dependent predator-prey systems with functional responses, J. Math. Anal. Appl. 278 (2003), no. 2, 443-471 https://doi.org/10.1016/S0022-247X(02)00718-7