Development of Immobilization Devices for Patients with Pelvic Malignancies and a Feasibility Evaluation during Radiotherapy

골반부 암 환자를 위한 고정기구 개발 및 방사선치료 시 효용성 평가

  • Park, Jong-Min (Department of Radiation Applying Life Science, Seoul National University Graduate School) ;
  • Park, Yang-Kyun (Department of Radiation Applying Life Science, Seoul National University Graduate School) ;
  • Cho, Woong (Department of Radiation Applying Life Science, Seoul National University Graduate School) ;
  • Park, Charn-Il (Department of Radiation Oncology, Seoul National University College of Medicine) ;
  • Ha, Sung-Whan (Department of Radiation Oncology, Seoul National University College of Medicine)
  • 박종민 (서울대학교 대학원 방사선응용생명과학) ;
  • 박양균 (서울대학교 대학원 방사선응용생명과학) ;
  • 조웅 (서울대학교 대학원 방사선응용생명과학) ;
  • 박찬일 (서울대학교 의과대학 방사선종양학교실) ;
  • 하성환 (서울대학교 의과대학 방사선종양학교실)
  • Published : 2007.06.30

Abstract

[ $\underline{Purpose}$ ]: Immobilization devices that improve the setup reproducibility of pelvic cancer patients and that provide comfort to patients during radiotherapy were designed and the feasibility of the devices was evaluated. $\underline{Materials\;and\;Methods}$: A customized device was designed to immobilize a knee, thigh, and foot of a patient. Sixty-one patients with prostate cancer were selected and were divided into two groups-with or without devices. The setup errors were measured with respect to bony landmarks. The difference between digitally reconstructed radiographs (DRR) and simulation films, and the differences between DRR and portal films were measured. $\underline{Results}$: The left-right (LR), anterior-posterior (AP) and craniocaudal (CC) errors between the DRR and simulation films were $1.5{\pm}0.9\;mm$, $3.0{\pm}3.6\;mm$, and $1.6{\pm}0.9\;mm$, respectively without devices. The errors were reduced to $1.3{\pm}1.9\;mm$, $1.8{\pm}1.5\;mm$ and $1.1{\pm}1.1\;mm$, respectively with the devices. The errors between DRR and portal films were $1.6{\pm}1.2\;mm$, $4.0{\pm}4.1\;mm$, and $4.2{\pm}5.5\;mm$, respectively without the devices and were reduced to $1.0{\pm}1.8\;mm$, $1.2{\pm}0.9\;mm$, and $1.2{\pm}0.8\;mm$, respectively, with the devices. The standard deviations among the portal films were 1.1 mm, 2.1 mm, and 1.0 mm at each axis without the devices and 0.9 mm, 1.6 mm and 0.8 mm with the devices. The percentage of setup errors larger than 3 mm and 5 mm were significantly reduced by use of the immobilization devices. $\underline{Conclusion}$: The designed devices improved the setup reproducibility for all three directions and significantly reduced critical setup errors.

목 적: 골반부 암 환자 치료 시 재현성을 향상시키고 환자에게 편안함을 주는 하체 고정기구를 개발하였고 그 효용성을 검증하였다. 대상 및 방법: 하체 고정기구는 앙와위와 복와위에서 환자의 무릎, 허벅지, 발을 고정할 수 있도록 설계되었고, 폴리우레탄 재질로 제작되었다. 고안된 고정기구는 앙와위에서 무릎의 위치를 고정하는 보조기구 및 발의 위치를 고정하는 보조기구를 개발하였고 복와위에서 무릎의 위치를 고정하는 보조기구를 개발하였다. 앙와위용 무릎 고정용 보조기구는 동시에 복와위에서 발을 고정할 수 있도록 설계하였다. 기구의 효용성을 검증하기 위하여 본원에서 치료를 받은 61명의 전립선암 환자를 대상으로 재현성을 측정하였다. 좌우 방향, 전후 방향, 두미(cranial-caudal) 방향에 대하여, 식별 가능한 bony-landmark를 재현성의 기준으로 설정하였다. 대상 환자에 대하여 1) 디지털재구성사진(DRR)과 모의치료사진(simulation image)의 차이, 2) 디지털재구성사진과 조사영역사진(linacgram)의 차이, 3) 조사영역사진 간의 표준편차를 조사하였고, 고정기구를 사용한 환자군과 사용하지 않은 환자군에 대하여 재현성의 차이를 통계적으로 분석하였다. 결 과: 하체 고정기구를 사용하지 않은 환자군에서 각 방향(좌우, 전후, 두미 방향)에 따른 디지털재구성사진과 모의치료 사진의 차이는 좌우, 전후, 두미 방향에 따라 각각 $1.5{\pm}0.9\;mm$, $3.0{\pm}3.6\;mm$, $1.6{\pm}0.9\;mm$, 디지털재구성사진과 조사영역사진의 차이는 각각 $1.6{\pm}1.2\;mm$, $4.0{\pm}4.1\;mm$, $4.2{\pm}5.5\;mm$, 조사영역사진 간의 평균 표준편차는 각각 1.1 mm, 2.1 mm, 1.0 mm로 나타났다. 하체 고정기구를 사용한 환자군에서 디지털재구성사진과 모의 치료사진의 차이는 좌우, 전후, 두미 방향에 따라 각각 $1.3{\pm}1.9\;mm$, $1.8{\pm}1.5\;mm$, $1.1{\pm}1.1\;mm$, 디지털재구성사진과 조사영역사진 간의 차이는 각각 $1.0{\pm}1.8\;mm$, $1.2{\pm}0.9\;mm$, $1.2{\pm}0.8\;mm$, 조사영역사진 간의 평균 표준편차는 각각 0.9 mm, 1.6 mm, 0.8 mm로 고정기구를 사용하지 않았을 때보다 유의하게 재현성이 향상된 것으로 나타났다. 결 론: 본 연구에서 고안된 하체 고정기구는 골반부암 환자 치료 시 편안함을 제공해 주고 재현성 향상에 도움을 주는 것으로 사료된다.

Keywords

References

  1. Corn BW, Hanks GE, Schultheiss TE, et al. Conformal treatment of prostate cancer with improved targeting: superior prostate-specific antigen response compared to standard treatment. Int J Radiat Oncol Biol Phys 1995;32:325-330 https://doi.org/10.1016/0360-3016(94)00618-U
  2. Fukunga-Johnson N, Sandler HM, McLaughlin PW, et al. Results of 3D conformal radiotherapy in the treatment of localized prostate cancer. Int J Radiat Oncol Biol Phys 1997; 38:311-317 https://doi.org/10.1016/S0360-3016(97)82499-6
  3. Pollack A, Zegars GK, Starkschall G, et al. Conventional vs conformal radiotherapy for prostate cancer: preliminary results of dosimetry and acute toxicity. Int J Radiat Oncol Biol Phys 1996;343:555-564
  4. Soften EM, Hanks GE, Hutn MA, et al. Conformal static field radiation therapy treatment of early prostate cancer versus non-conformal techniques: a reduction in acute morbidity. Int H Radiat Oncol Biol Phys 1992;24:485-488 https://doi.org/10.1016/0360-3016(92)91063-S
  5. Schultheiss TE, Hanks GE, Hunt MA, et al. Incidence of and factors related to late complications in conformal and conventional radiation treatment of cancer of the prostate. Int H Radiat Oncol Biol Phys 1995;32:643-649 https://doi.org/10.1016/0360-3016(95)00149-S
  6. Hanks GE, Schultheiss TE, Hunt MA, et al. Factors influencing incidence of acute grade 2 morbidity in conformal and standard radiation treatment of prostate cancer. Int H Radiat Oncol Biol Phys 1995;31 :25-29 https://doi.org/10.1016/0360-3016(94)00366-S
  7. Suh YL, Yi BY, Shin SA, et al. A feasibility study on the abdomen immobilization with air injected balloon blanket. Korean J Med Phys 2002;13:176-180
  8. Rosenthal SA, Roach M III. Goldsmith BJ, et al. Immobilization improves the reproducibility of patient position¬ing during six-field conformal radiation therapy for prostate carcinoma. Int J Radiat Oncol Biol Phys 1993;27:921-926 https://doi.org/10.1016/0360-3016(93)90469-C
  9. CAtton C, Lebar L, Warde p, et al. Improvement in total positioning error for lateral prostatic fields using a soft immobilization device. Radiother Oncol 1997:44:265-270 https://doi.org/10.1016/S0167-8140(97)00061-3
  10. Garcia R, Oozer R, Le Thanh H, et al. Radiotherapie confirmationelle des cancers de la prostate: apport de la contention pelvienne et de nouveaux reperes de positionnement. Cancer Radiother 1997;1:307-313 https://doi.org/10.1016/S1278-3218(97)81498-9
  11. Faiz M. The physics of radiation therapy. 3rd ed. Philadelphia; Lippincott williams & wilkins, 2003:220-226
  12. Huh SN, Cho W, Park YK, Ha SW. Development of devices for improving the reproducibility of patient positioning on a breast board. J Korean Soc Ther Radiol Oncol 2005;23: 123-130
  13. Malone S, Szanto J, Perry G, et al. A prospective comparison of three systems of patient immobilization for prostate radiotherapy. Int J Radiat Oncol Biol Phys 2000:48:657-665 https://doi.org/10.1016/S0360-3016(00)00682-9
  14. Andrew K, Val G, Nicole H, Sandra T. A randomized trial evaluating rigid immobilization for pelvic irradiation. Int J Radiat Oncol Biol Phys 2003;56: 1105-1111 https://doi.org/10.1016/S0360-3016(03)00222-0
  15. Dunscombe p, Loos S, Leszczynski K. Sizes and sources of field placement error in routine irradiation for prostate cancer. Radiother Oncol 1993;26:174-176 https://doi.org/10.1016/0167-8140(93)90100-M
  16. Song PY, Washington M, Vaida F, et al. A comparison of four patient immobilization devices in the treatment of prostate cancer patients with three dimensional conformal radiotherapy. Int J Radiat Oncol Biol Phys 1996;34:213-219 https://doi.org/10.1016/0360-3016(95)02094-2
  17. Gildersleve J, Dearnaley D, Evans p, et al. Reproducibility of patient positioning during routine radiotherapy, as assessed by an integrated megavoltage imaging system. Radiother Oncol 1995;35: 151-160 https://doi.org/10.1016/0167-8140(95)01536-P