Radiation-induced Pulmonary Toxicity following Adjuvant Radiotherapy for Breast Cancer

유방암 환자에서 보조적 방사선치료 후의 폐 손상

  • Moon, Sung-Ho (Departments of Radiation Oncology, Seoul National University Bundang Hospital, Seoul National University College of Medicine) ;
  • Kim, Tae-Jung (Departments of Radiology, Seoul National University Bundang Hospital, Seoul National University College of Medicine) ;
  • Eom, Keun-Young (Departments of Radiation Oncology, Seoul National University Bundang Hospital, Seoul National University College of Medicine) ;
  • Kim, Jee-Hyun (Departments of Breast Care Center, Seoul National University Bundang Hospital, Seoul National University College of Medicine) ;
  • Kim, Sung-Won (Departments of Breast Care Center, Seoul National University Bundang Hospital, Seoul National University College of Medicine) ;
  • Kim, Jae-Sung (Departments of Radiation Oncology, Seoul National University Bundang Hospital, Seoul National University College of Medicine) ;
  • Kim, In-Ah (Departments of Radiation Oncology, Seoul National University Bundang Hospital, Seoul National University College of Medicine)
  • 문성호 (서울대학교 의과대학 분당서울대병원 방사선종양학과) ;
  • 김태정 (서울대학교 의과대학 분당서울대병원 진단방사선과) ;
  • 엄근용 (서울대학교 의과대학 분당서울대병원 방사선종양학과) ;
  • 김지현 (서울대학교 의과대학 분당서울대병원 유방센터) ;
  • 김성원 (서울대학교 의과대학 분당서울대병원 유방센터) ;
  • 김재성 (서울대학교 의과대학 분당서울대병원 방사선종양학과) ;
  • 김인아 (서울대학교 의과대학 분당서울대병원 방사선종양학과)
  • Published : 2007.06.30

Abstract

[ $\underline{Purpose}$ ]: To evaluate the incidences and potential predictive factors for symptomatic radiation pneumonitis (SRP) and radiographic pulmonary toxicity (RPT) following adjuvant radiotherapy (RT) for patients with breast cancer. A particular focus was made to correlate RPT with the dose volume histogram (DVH) parameters based on three-dimensional RT planning (3D-RTP) data. $\underline{Materials\;and\;Methods}$: From September 2003 through February 2006, 171 patients with breast cancer were treated with adjuvant RT following breast surgery. A radiation dose of 50.4 Gy was delivered with tangential photon fields on the whole breast or chest wall. A single anterior oblique photon field for supraclavicular (SCL) nodes was added if indicated. Serial follow-up chest radiographs were reviewed by a chest radiologist. Radiation Therapy Oncology Group (RTOG) toxicity criteria were used for grading SRP and a modified World Health Organization (WHO) grading system was used to evaluate RPT. The overall percentage of the ipsilateral lung volume that received ${\geq}15\;Gy\;(V_{15}),\;20\;Gy\;(V_{20})$, and $30\;Gy\;(V_{30})$ and the mean lung dose (MLD) were calculated. We divided the ipsilateral lung into two territories, and defined separate DVH parameters, i.e., $V_{15\;TNGT},\;V_{20\;TNGT},\;V_{30\;TNGT},\;MLD_{TNGT}$, and $V_{15\;SCL},\;V_{20\;SCL},\;V_{30SCL},\;MLD_{SCL}$ to assess the relationship between these parameters and RPT. $\underline{Results}$: Four patients (2.1%) developed SRP (three with grade 3 and one with grade 2, respectively). There was no significant association of SRP with clinical parameters such as, age, pre-existing lung disease, smoking, chemotherapy, hormonal therapy and regional RT. When 137 patients treated with 3D-RTP were evaluated, 13.9% developed RPT in the tangent (TNGT) territory and 49.2% of 59 patients with regional RT developed RPT in the SCL territory. Regional RT (p<0.001) and age (p=0.039) was significantly correlated with RPT. All DVH parameters except for $V_{15\;TNGT}$ showed a significant correlation with RPT (p<0.05). $MLD_{TNGT}$ was a better predictor for RPT for the TNGT territory than $V_{15\;SCL}$ for the SCL territory. $\underline{Conclusion}$: The incidence of SRP was acceptable with the RT technique that was used. Age and regional RT were significant factors to predict RPT. The DVH parameter was good predictor for RPT for the SCL territory while $MLD_{TNGT}$ was a better predictor for RPT for the TNGT territory.

목 적: 유방암 환자에서 보조적 방사선치료 후 호흡기 증상을 동반한 방사선 폐렴(SRP) 및 방사선학적 폐 독성(RPT)의 빈도 및 이에 영향을 미치는 예측인자를 알아보고자 하였다. 특히 3차원 방사선계획에서 얻은 선량체적히스토그람(DVH) 인자와 RTP의 상관관계를 중심으로 분석해보고자 하였다. 대상 및 방법: 2003년 9월부터 2006년 2월까지 171명의 환자가 유방암으로 수술 후 방사선치료를 받았다. 2개의 tangential photon 조사야가 통상적으로 사용되었고, 액와부 림프절 전이 정도에 따라 anterior oblique photon 조사야를 추가하였다. 유방 보존술 후 보조적 방사선치료를 받은 침윤성 유방암 환자에는 전자선을 이용한 boost가 적용되었다. 방사선 치료 후의 정기추적 흉부 단순촬영소견을 흉부방사선전문의와 함께 검토, 분석하였다. RTOG 특성기준 및 modified WHO grading system을 적용하였다. 조사받은 방사선량에 따라 $V_{15},\;V_{20},\;V_{30}$ 및 mean lung dose (MLD)를 구하되, 동측 폐를 tangential 및 SCL 영역으로 구분하여, 각각의 DVH parameters 즉 $V_{15\;TNGT},\;V_{20\;TNGT},\;V_{30\;TNGT},\;MLD_{TNGT}$$V_{15\;SCL},\;V_{20\;SCL},\;V_{30\;SCL},\;MLD_{SCL}$을 구하여 RPT와의 상관관계를 분석하였다. 결 과: 호흡기 증상을 동반한 방사선 폐렴(SRP)이 4예(2.1%)에서 발생하였다(RTOG grade 3가 3예 grade 1이 1예). 나이 흡연여부, 기존폐질환유무, 항암요법, 호르몬치료, regional RT 여부 등은 SRP와 무관하였다. 3-RTP가 시행된 137예 중 13.9%에서 tangential 영역에 RPT가 발생하였다. Regional RT를 받은 59 중 49.2%에서 SCL 영역에 RPT가 발생하였다. Regional RT 유무(p<0.001), 환자의 나이(p=0.039), V15 TNGT를 제외한 모든 DVH parameter들이 RPT와 유의한 상관관계를 나타내었다. $MLD_{TNGT}$는 TNGT 영역의 RPT를, $V_{15\;SCL}$는 SCL 영역의 RPT를 예측하기에 적합한 것으로 분석되었다. 결 론: 본 연구에서 SRP의 빈도는 매우 낮았다. Regional RT 여부와 환자의 나이, DVH parameter들이 RPT와 유의한 상관관계를 나타내었으며, $MLD_{TNGT}$는 TNGT 영역에서, $V_{15\;SCL}$는 SCL 영역에서 RPT의 유의한 예측인자였다.

Keywords

References

  1. Overgaard M, Jensen MS, Overgaard J, et al. Postoperative radiotherapy in high-risk postmenopausal breast cancer patients given adjuvant tamoxifen. Danish Breast Cancer Group DBCG 82c randomised trial. Lancet 1999;358: 1641-1648 https://doi.org/10.1016/S0140-6736(01)06659-4
  2. Overgaard M, Hansen PS, Overgaard J, et al. Postoperative radiotherapy in high-risk premenopausal women with breast cancer who receive adjuvant chemotherapy. N Engl J Med 1997;337:949-955 https://doi.org/10.1056/NEJM199710023371401
  3. Ragaz J. Jackson SM. Le N. et al. Adjuvant radiotherapy and chemotherapy in node-positive premenopausal women with breast cancer. N Engl J Med 1997;337:956-962 https://doi.org/10.1056/NEJM199710023371402
  4. Cuzick J, Stewart H, Rutqvist L, et al. Cause-specific mortality in long-term survivors of breast cancer who participated in trials of radiotherapy [see comments]. J Clin Oncol 1994;12: 447-453 https://doi.org/10.1200/JCO.1994.12.3.447
  5. Lingos TI. Recht A Vicini F, et al. Radiation pneumonitis in breast cancer treated with conservative surgery and radiation therapy. Int J Radiat Oncol Biol Phys 1991:21: 355-360 https://doi.org/10.1016/0360-3016(91)90782-Y
  6. Lind PA. Wennberg B. Gagliardi G. et al. Pulmonary complications following different radiotherapy techniques for breast cancer, and the association to irradiated lung volume and dose. Breast Cancer Res Treat 2001; accepted pending revision
  7. Gagliardi G, Bjohle J, Lax I. et al. Radiation pneumonitis after breast cancer irradiation: analysis of the complication probability using the relative seriality model. Int J Radiat Oncol Biol Phys 2000:46:373-381 https://doi.org/10.1016/S0360-3016(99)00420-4
  8. Gaffney OK. Prows J. Leavitt DO. et al. Electron arc irradiation of the postmastectomy chest wall: clinical results. Radiother Oncol 1997:42:17-24 https://doi.org/10.1016/S0167-8140(96)01860-9
  9. Price A. Jack WJ. Kerr GR. et al. Acute radiation pneumonitis after postmastectomy irradiation: effect of fraction size. Clin Oncol (R Call Radiol) 1990:2:224-229 https://doi.org/10.1016/S0936-6555(05)80173-6
  10. Rothwell RI. Kelly SA. Joslin CA. Radiation pneumonitis in patients treated for breast cancer. Radiother Oncol 1985; 4:9-14 https://doi.org/10.1016/S0167-8140(85)80056-6
  11. Lind PA. Gagliardi G. Wennberg B. et al. A descriptive study of pulmonary complications after postoperative radiation therapy in node-positive stage II breast cancer. Acta Oncol 1997;36:509-515 https://doi.org/10.3109/02841869709001307
  12. Johansson S, Bjermer L. Franzen L. et al. Effects of ongoing smoking on the development of radiation-induced pneumonitis in breast cancer and oesophagus cancer patients. Radiother Oncol 1998:49:41-47 https://doi.org/10.1016/S0167-8140(98)00064-4
  13. Taghian AG. Assaad SI. Niemierko A. et al. Risk of pneumonitis in breast cancer patients treated with radiation therapy and combination chemotherapy with paclitaxel. J Natl Cancer Inst 2001;93:1806-1811 https://doi.org/10.1093/jnci/93.23.1806
  14. Lind PA. Marks LB. Jamieson TA. et al. Predictors for pneumonitis during locoregional radiotherapy in high-risk patients with breast carcinoma treated with high-dose chemotherapy and stem-cell rescue. Cancer 2002;94:2821-2829 https://doi.org/10.1002/cncr.10573
  15. Bentzen SM. Skoczylas JZ. Overgaard M. et al. Radiotherapy related lung fibrosis enhanced by tamoxifen. J Natl Cancer Inst 1996;88:918-922 https://doi.org/10.1093/jnci/88.13.918
  16. Hernando ML. Marks LB. Bentel GC. et al. Radiationinduced pulmonary toxicity: a dose-volume histogram analysis in 201 patients with lung cancer. Int J Radiat Oncol Biol Phys 2001 ;51 :650-659 https://doi.org/10.1016/S0360-3016(01)01685-6
  17. Armstrong JG. Zelefsky MJ. Leibel SA. et al. Strategy for dose escalation using 3-dimensional confonnal radiation therapy for lung cancer. Ann Oncol 1995;6:693-697 https://doi.org/10.1093/oxfordjournals.annonc.a059286
  18. Lind PA. Svane G. Gagliardi G. et al. Abnormalities by pulmonary regions studied with computer tomography following local or local-regional radiotherapy for breast cancer. Int J Radiat Oncol Biol Phys 1999:43:489-496 https://doi.org/10.1016/S0360-3016(98)00414-3
  19. Wennberg B. Gargliardi G. Sundbom L. et al. Early response of lung in breast cancer irradiation: radiologic density changes measured by CT and symptomatic radiation pneumonitis. Int J Radiat Oncol Biol Phys 2002;52:1196-1206 https://doi.org/10.1016/S0360-3016(01)02770-5
  20. Kim IA. Choi lB. Kang KM. et al. Concurrent chemoradiation therapy in stage III non-small cell lung cancer. J Korean Soc Ther Rad Oncol 1997;15:27-36
  21. McDonald S. Rubin P. Phillips TL. et al. Injury to the lung from cancer therapy: clinical syndromes, measurable endpoints and potential scoring systems. Int J Radiat Oncol Biol Phys 1995;31 :1187-1203 https://doi.org/10.1016/0360-3016(94)00429-O
  22. Movsas B. Raffin TA. Epstein AH. et al. Pulmonary radiation injury. Chest 1997;111:1061-1076 https://doi.org/10.1378/chest.111.4.1061
  23. Freyer CJH. Fitzpatrick PJ. Rider WD. et al. Radiation pneumonitis: experience following a large single dose of radiation. Int J Radiat Oncol Biol Phys 1978:4:931-936 https://doi.org/10.1016/0360-3016(78)90002-0
  24. Mah K. Van Dyk J. Keane T. et al. Acute radiation induced pulmonary damage: a clinical study on the response to fractionated radiation therapy. Int J Radiat Oncol Biol Phys 1987;13:179-188 https://doi.org/10.1016/0360-3016(87)90125-8
  25. Rothwell RI. Kelly SA. Joslin CA. Radiation pneumonitis in patients treated for breast cancer. Radiother Oncol 1985; 4:9-14 https://doi.org/10.1016/S0167-8140(85)80056-6
  26. Bjermer L. Franze'n L. Littbrand B. et al. Effects of smoking and irradiated volume of inflammatory response in the lung of irradiated breast cancer patients evaluated with bronchoalveolar lavage. Cancer Res 1990;50:2027-2030
  27. Theuws JC. Kwa SL. Wagenaar AC. et al. Dose-effect relations for early local pulmonary injury after irradiation for malignant lymphoma and breast cancer. Radiother Oncol 1998:48:33-43 https://doi.org/10.1016/S0167-8140(98)00019-X
  28. Yu TK. Whitman GJ. Thames HD. et al. Clinically relevant pneumonitis after sequential paclitaxel-based chemotherapy and radiation in breast cancer patients. J Natl Cancer Inst 2004;96:1676-1681 https://doi.org/10.1093/jnci/djh315
  29. Bucholz TA. Austin-Seymour MM. Moe RE. et al. Effect of delay in radiation in combined modality treatment of breast cancer. Int J Radiat Oncol Biol Phys 1993:26:23-35 https://doi.org/10.1016/0360-3016(93)90169-V
  30. Taghian AG, Assaad SI. Niemierko A. et al. Is a reduction in radiation lung volume and dose necessary with paclitaxel chemotherapy for node-positive breast cancer? Int J Radiat Oncol Biol Phys 2005;62:386-391 https://doi.org/10.1016/j.ijrobp.2004.09.044
  31. Burstein HJ, Bellon JR, Galper S, et al. Prospective evaluation of concurrent paclitaxel and radiation therapy after adjuvant doxorubicin and cyclophosphamide chemotherapy for stage II or III breast cancer. Int J Radiat Oncol Biol Phys 2006;64:493-504
  32. Koh E, Sun A, Tran TH, et al. Clinical dose-volume histo¬gram analysis in predicting radiation pneumonitis in Hodgkin's lymphoma. Int J Radiat Oncol Biol Phys 2006;66:223-228 https://doi.org/10.1016/j.ijrobp.2006.03.063
  33. Lind PA, Marks LB, Hardenbergh PA, et al. Techinical factors associated with radiation pneumonitis after local- regional radiation therapy for breast cancer. Int J Radiat Oncol Biol Phys 2002;52:137-143 https://doi.org/10.1016/S0360-3016(01)01715-1
  34. Gagliardi G, Biohle J, Lax I. et al. Radiation pneumonitis after breast cancer irradiation: analysis of the complication probability using the relative seriality model. Int J Radiat Oncol Biol Phys 2000:46:373-381 https://doi.org/10.1016/S0360-3016(99)00420-4
  35. Lind PA, Wennberg B, Gagliardi G, et al. ROC curves and evaluation of radiation-induced pulmonary toxicity in breast cancer. Int J Radiat Oncol Biol Phys 2006;64:765-770 https://doi.org/10.1016/j.ijrobp.2005.08.011
  36. Kahan Z, Csenki M, Varga Z, et al. The risk of early and late lung sequele after conformal radiotherapy in breast cancer patients. Int J Radiat Oncol Biol Phys 2007 [In press]