Cytogenetic Analysis of Korean Shinner, Coreoleuciscus splendidus (Cyprinidae)

쉬리, Coreoleuciscus splendidus (Cyprinidae)의 세포유전학적 연구

  • Kim, Dong-Soo (Department of Aquaculture/Institute of Marine Living Modified Organisms (iMLMO), Pukyong National University) ;
  • Song, Ha-Yeun (Department of Aquaculture/Institute of Marine Living Modified Organisms (iMLMO), Pukyong National University) ;
  • Bang, In-Chul (Department of Marine Biotechnology, Soonchunhyang University) ;
  • Nam, Yoon-Kwon (Department of Aquaculture/Institute of Marine Living Modified Organisms (iMLMO), Pukyong National University)
  • 김동수 (부경대학교 양식학과/해양수산형질전환생물연구소) ;
  • 송하연 (부경대학교 양식학과/해양수산형질전환생물연구소) ;
  • 방인철 (순천향대학교 해양생명공학과) ;
  • 남윤권 (부경대학교 양식학과/해양수산형질전환생물연구소)
  • Published : 2007.05.25

Abstract

Cytogenetic analyses of an endemic species, Coreoleuciscus splendidus (Cyprinidae) was performed including erythrocyte measurement, chromosome count and karyotyping, nucleolar organizing region (NOR) banding and flow cytometric analysis of genome size. C. splendidus had the same modal chromosome number of 2n = 48 between sexes, however, displayed a sex-related dimorphism in their chromosome karyotypes. Males represented a pair of heteromorphic chromosomes which couldn‘t be seen in any female individuals, indicating that the sex determination mechanism of this species should be a typical XX-XY based male heterogamety (female=10M+6SM+8A+XX vs male=10M+6SM+8A+XY). Other cytogenetic features such as Ag-NORs located in a pair of acrocentric chromosomes, estimated nuclear volume ($28{\mu}m^3$) and cellular DNA content (2.4 pg/cell) suggest that genetic recombination might be the main driving force responsible for the evolution of this species rather than the polyploidy-based evolutionary process as in many other Cyprinidae species.

우리나라 고유 담수 어종인 쉬리(Coreoleuciscus splendidus; Cyprinidae)를 대상으로 세포크기, 염색체 수 분석, 핵형 분석, 세포당 DNA 함량 조사 등 세포유전학적 연구를 실시하였다. 쉬리 암,수의 염색체 modal number는 모두 2n = 48로 나타났으나 암,수간 형태가 다른 성염색체(sex chromosome)가 관찰되었다. 쉬리 암컷은 10쌍의 중부염색체, 6쌍의 차중부염색체, 8쌍의 차단부염색체 그리고 XX 염색체로 나타났고, 반면 수컷은 10쌍의 중부, 6쌍의 차중부 및 8쌍의 차단부염색체와 함께 XY 성염색체를 나타냄으로써 전형적인 XX-XY의 성 결정 기작(sex determination mechanism)을 갖는 것으로 나타났다. 또한 쉬리는 1쌍의 Ag-NOR을 차단부 상동염색체에 갖고 있었고, 쉬리의 세포당 평균 DNA 함량은 flow cytometry 분석을 통해 2.4 pg/cell로 나타났다. 적혈구 세포 크기를 분석을 통해 핵 용적을 평가한 결과 암수 모두 $28\;{\mu}m^3$를 나타내었다. 본 세포유전학적 분석 결과를 통해 본 어종은 진화과정 중 여러 잉어과 어류에서 관찰되는 배수성에 의한 진화 보다는 유전자 재조합 등 점 돌연변이가 진화가 기본 기작이었을 것으로 판단된다.

Keywords

References

  1. Arkhipchuk, V. V., 1995. Role of chromosomal and genome mutations in the evolution of bony fishes. Hydrobiol. J., 31, 55-65
  2. Devlin R. H. and Y. Nagahama, 2002. Sex determination and sex differentiation in fish: an overview of genetic, physiological, ad environmental influences. Aquaculture, 208, 191-364 https://doi.org/10.1016/S0044-8486(02)00057-1
  3. Gold, J., 1984. Silver-staining and heteromorphism of chromosomal nucleolus organizer regions in North American cyprinid fishes. Copeia., 232, 5-11
  4. Gold, J. and C. Amemiya, 1987. Genome size variation in North American minnows (Cyprinidae). II. Variation among 20 species. Genome, 29, 481-489 https://doi.org/10.1139/g87-083
  5. Hardie, D. C. and P. D. N. Hebert, 2004. Genome-size evolution in fishes. Can. J. Fish. Aquat. Sci., 61, 1636-1646 https://doi.org/10.1139/f04-106
  6. Hinegarder, R. and D. Rosen., 1972. Cellular DNA content and the evolution of teleostean fishes. Am. Nat., 106, 621-644 https://doi.org/10.1086/282801
  7. Howell. W. M. and D. A. Black, 1979. Localization of the nucleolus organizer regions on the sex chromosomes of the banded killifish, Fundulus diaphanus. Copeia, 544-546
  8. Kim, D. S., Y. K. Nam, J. K. Noh, C. H. Park and F. A. Chapman, 2004. Karyotype of North American shortnose sturgeon Acipenser brevirostrum with the highest chromosome number in the Acipenseriformes. Ichthyol. Res., 52, 94-97 https://doi.org/10.1007/s10228-004-0257-z
  9. Lanfredi M., L. Congiu and M. Garrido-Ramos, 2001. Chromosomal location and evolution of a satellite DNA family in seven sturgeon species. Chromosome Res., 9, 47-52 https://doi.org/10.1023/A:1026739616749
  10. Lemoine, H. L. Jr. and L. T. Smith, 1980. Polyploidy induced in brook trout by cold shock. Chromosome Res., 109, 626-631
  11. Levan, A., K. Fredga and A. A. Sanberg, 1964. Nomenclature for centrometric position on chromosomes. Heriditas, 52, 202-220
  12. Maria, A., A. Morescalchi, R. Lucia and S. Vincenzo, 2002. Cytogenetic and molecular studies in a lungfish, Protopterus annectens (Osteichthyes, Dipnoi). Gene, 295, 279-287 https://doi.org/10.1016/S0378-1119(02)00755-2
  13. Ohno, S. 1974. Animal cytogenetics vol. 4, Cordata 1. Gebründer Borntraeger
  14. Phillips, R. B. and P. E. Ihssen, 1985. Chromosome banding in salmonid fishes; nucleolar organizer regions in Salmo and Salvelinus. Can. J. Genet. Cytol., 27, 433-440 https://doi.org/10.1139/g85-064
  15. Sezaki, K. and H. Kobayashi, 1978. Comparison of erythrocytic size between diploid and tetraploid in spinous loach, Cobitis biwae. Bull. Jap. Soc. Sci. Fish., 41, 851-854
  16. Szarski, H. 1976. Cell size and nuclear DNA content in vertebrates. Int. Rev. Cytol., 44, 93-112 https://doi.org/10.1016/S0074-7696(08)61648-4
  17. 김익수, 1997. 한국동식물도감. 제37권 동물편(담수어류). 교육부, pp. 104-105