ENHANCED FUZZY SLIDING MODE CONTROLLER FOR LAUNCH CONTROL OF AMT VEHICLE USING A BRUSHLESS DC MOTOR DRIVE

  • Zhao, Y.S. (Center for Computer-Aided Design, School of Mechanical Science & Engineering, Huazhong University of Science & Technology) ;
  • Chen, L.P. (Center for Computer-Aided Design, School of Mechanical Science & Engineering, Huazhong University of Science & Technology) ;
  • Zhang, Y.Q. (Center for Computer-Aided Design, School of Mechanical Science & Engineering, Huazhong University of Science & Technology) ;
  • Yang, J. (Center for Computer-Aided Design, The University of Iowa)
  • Published : 2007.06.30

Abstract

Due to the clutch's non-linear dynamics, time-delays, external disturbance and parameter uncertainty, the automated clutch is difficult to control precisely during the launch process or automatic mechanical transmission (AMT) vehicles. In this paper, an enhanced fuzzy sliding mode controller (EFSMC) is proposed to control the automated clutch. The sliding and global stability conditions are formulated and analyzed in terms of the Lyapunov full quadratic form. The chattering phenomenon is handled by using a saturation function to replace the pure sign function and fuzzy logic adaptation system in the control law. To meet the real-time requirement of the automated clutch, the region-wise linear technology s adopted to reduce the fuzzy rules of the EFSMC. The simulation results have shown hat the proposed controller can achieve a higher performance with minimum reaching time and smooth control actions. In addition, our data also show that the controller is effective and robust to the parametric variation and external disturbance.

Keywords

References

  1. Abdelhameed, M. M. (2005). Enhancement of sliding mode controller by fuzzy logic with application to robotic manipulators. MECHATRONICS, 15, 439-458 https://doi.org/10.1016/j.mechatronics.2004.09.001
  2. Chen, J and Tang, P. C. (1999). A sliding mode current control scheme for PWM brushless DC motor drives. IEEE Trans. Power Electronics 14, 3, 541-551 https://doi.org/10.1109/63.761698
  3. Chen, L., Zhang, J. W. and Xi, G. (2000). Feedback linearization control for electronically controllable clutch of vehicle. SAE Paper No. 2000-01-1638
  4. David, J. and Natarajan, N. (2005). Design of an optimal clutch controller for commercial trucks. Proc. 2005 American Control Conf., Portland, OR, USA, 1599- 1606 (AACC, Dayton)
  5. Faiz, J., Azizian, M. R. and Aboulghasemian-Azami, M. (1996). Simulation and analysis of brushless DC motor drives using hysteresis, ramp comparison and predictive current control techniques. Simulation Practice and Theory, 3, 347-363 https://doi.org/10.1016/0928-4869(95)00014-3
  6. Fung, R. F., Chen, K. W. and Yen, J. Y. (1999). Fuzzy sliding mode controlled slider-crank mechanism using a PM synchronous servo motor drive. Int. J. Mechanical Sciences, 41, 337-355 https://doi.org/10.1016/S0020-7403(98)00063-0
  7. Fung, R. F. and Shaw, C. C. (2000). Region-wise linear fuzzy sliding mode control of the motor-mechanism systems. J. Sound and Vibration 234, 3, 471-489 https://doi.org/10.1006/jsvi.1999.2871
  8. Gaillard, C. L. and Singh, R. (2000). Dynamic analysis of automotive clutch dampers. Applied Acoustics, 60, 399-424 https://doi.org/10.1016/S0003-682X(00)00005-0
  9. Garofalo, F. and Glielmo, L. (2001). Smooth engagement for automotive dry clutch. Proc. 40th IEEE Conf. Decision and Control, Orlando, Florida USA, 529-534 (IEEE, New York)
  10. Glielmo, L., Iannelli, L., Vacca, V. and Vasca, F. (2006). Gearshift control for automated manual transmissions. IEEE/ASME Trans. Mechatronics 11, 1, 17-26 https://doi.org/10.1109/TMECH.2005.863369
  11. Glielmo, L. and Vasca, F. (2000). Engagement control for automotive dry clutch. Proc. 2000 American Control Conference, Chicago, Illinois, 1016-1017 (AACC, Dayton)
  12. Ha, Q. P., Rye, D. C. and Durrant-Whyte, H. F. (1999). Fuzzy moving sliding mode control with application to robotic manipulators. Automatic, 35, 607-616 https://doi.org/10.1016/S0005-1098(98)00169-1
  13. Hahn, J. O. and Lee, K. I. (2002). Nonlinear robust control of torque converter clutch slip system for passenger vehicles using advanced torque estimation algorithms. Vehicle System Dynamics 37, 3, 175-192 https://doi.org/10.1076/vesd.37.3.175.3531
  14. Hayashi, Y., Shimizu, Y. and Nakanura, S. Dote, Y. Takayama, A. Hirako, A. (1993). Neuro fuzzy optimal transmission control for automobile with variable loads. Proc. IECON' 93 Int. Conf. Industrial Electronics, Control and Instrumentation, 1, 430-434 (IEEE, New York)
  15. Hibino, R., Osawa, M. and Yamada, M. (1996). Control design for torque-converter-clutch slip system. Proc. 35th Conf. Decision and Control, Kobe, Japan, 1797-1802 (IEEE, New York)
  16. Horn, J., Bamberger, J. and Michau, P. (2003). Flatnessbased clutch control for automated manual transmissions. Control Engineering Practice, 11, 1353-1359 https://doi.org/10.1016/S0967-0661(03)00099-6
  17. Kaynak, O, Erbatur, K and Ertugrul, M. (2001). The fusion of computationally intelligent methodologies and sliding mode control-A survey. IEEE Trans. IE. 48, 1, 4-17
  18. Lee, J. H. and Youn, M. J. (2004). A new improved continuous variable structure controller for accurately prescribed tracking control of BLDD servo motors. Automatica, 40, 2069-2074
  19. Lin, J. M., Lin, M. C. and Wang, H. P. (2001). LEQG/LTR controller design with extended Kalman filter for sensorless brushless DC driver. Comput. Methods Appl. Mech. Engrg., 190, 5481-5494 https://doi.org/10.1016/S0045-7825(00)00365-0
  20. Liu, F., Li, Y. and Zhang, J. W. (2002). Robust control for automated clutch of AMT vehicle. SAE Paper No. 2002-01-0933
  21. Montanari, M. and Ronchi, F. (2004). Control and performance evaluation of a clutch servo system with hydraulic actuation. Control Engineering Practice, 12, 1369-1379 https://doi.org/10.1016/j.conengprac.2003.09.004
  22. Phakamach, P., Tiacharoen, S. and Akkaraphong, C. (2002). Position control of a brushless DC servomotor using a sliding mode model following control (SMFC) system. IEEE ICIT'02, Bangkok, THAILAND, 566-571. (IEEE, New York)
  23. Shen, S. W. and Wu, C. Q. (1999). 15An expert fuzzy control of automatic mechanical transmission clutch. SAE Paper No. 1999-01-2814
  24. Slotine, J. and Li, W. P. (1991). Applied Nonlinear Control. Prentice-Hall. Englewood Cliffs, New Jersey
  25. Slicker, J. M. and Loh, R. N. K. (1996). Design of robust vehicle launch control system. IEEE Trans. Control Systems Technology 4, 4, 326–335
  26. Tanaka, H. and Wada, H. (1995). Fuzzy control of clutch engagement for automated manual transmission. Vehicle System Dynamics, 24, 365-376 https://doi.org/10.1080/00423119508969097
  27. Transmission of AUTO. (2005). http://auto.sina.com.cn/news/2005-02-01/111998098.shtml
  28. Wu, H. X., Cheng, S. K. and Cui, S. M. (2005). A controller of brushless DC motor for electric vehicle. IEEE Trans. Magnetics, 41, 1, 509-513 https://doi.org/10.1109/TMAG.2004.839304
  29. Yu, F. M., Chung, H. Y. and Chen, S. Y. (2003). Fuzzy sliding mode controller design for uncertain timedelayed systems with nonlinear input. Fuzzy Sets and Systems, 140, 359-374 https://doi.org/10.1016/S0165-0114(02)00529-8
  30. Yu, X. H., Man, Z. H. and Wu, B. L. (1998). Design of fuzzy sliding-mode control systems. Fuzzy Sets and Systems, 95, 295-306 https://doi.org/10.1016/S0165-0114(96)00278-3
  31. Zanasi, R. and Visconti, A. (2001). Dynamic modeling and control of a car transmission system. Proc. 2001 IEEE/ASME Int. Conf. Advanced Intelligent Mechatronics, Como, Italy, 416-421 (IEEE/ASME, New York)
  32. Zhang, J., Chen, L. and Xi, G. (2002). System dynamic modeling and adaptive optimal control for automatic clutch engagement of vehicles. Proc. Instn. Mech. Engrs., Part D: Automobile Engineering, 216, 983-991