DOI QR코드

DOI QR Code

Determination of the Optimal Concentration of Fetal Bovine Serum for the Growth of Two Insect Cell and Viruses

두 가지 곤충 세포주에 대한 배양 및 바이러스 증식을 위한 최적 FBS 농도 결정

  • Lee, Jae-Kyung (School of Applied Life Science & Environment, College of Agriculture Life & Environment Science, Chungbuk National University) ;
  • Koo, Hyun-Na (School of Applied Life Science & Environment, College of Agriculture Life & Environment Science, Chungbuk National University) ;
  • Woo, Soo-Dong (School of Applied Life Science & Environment, College of Agriculture Life & Environment Science, Chungbuk National University)
  • 이재경 (충북대학교 농업생명환경대학 응용생명환경학부) ;
  • 구현나 (충북대학교 농업생명환경대학 응용생명환경학부) ;
  • 우수동 (충북대학교 농업생명환경대학 응용생명환경학부)
  • Published : 2007.08.30

Abstract

To determine the optimal concentration of fetal bovine serum (FBS) on the growth of insect cells and the multiplicity of viruses, the growth of cells (Sf21 and Bm5) and viruses were examined on the various concentrations of FBS. In view of the viability, growth speed, proliferation of cells and the amount of FBS, the most proper concentration for the cell culture were 7% and 5% for Sf21 and Bm5, respectively. The multiplicity of viruses at the various concentrations of FBS was similar in both cell lines at 5 days post-infection (p.i.). However, it differed significantly at 2 and 3 days p.i. The proper concentration of FBS were 10% and 3% for Sf21 at 2 and 3 days p.i., respectively, and 5% for Bm5 at both 2 and 3 days p.i. These results suggested that the optimal concentration of FBS should be determined according to the used cell lines and viruses for their optimum production.

곤충 세포주 Sf21과 Bm5 세포주에 대해 세포 배양과 바이러스의 증식을 위한 최적 FBS 의 농도를 결정하기 위하여 다양한 FBS 농도에서 세포 및 바이러스의 증식 곡선을 비교하였다. 세포의 생존율, 증식속도, 증식량 그리고 FBS 함량을 모두 고려할 때 Sf21 에 대해서는 7%가, Bm5에 대해서는 5% FBS 가 최적 농도로 결정되었다. 바이러스의 증식은 감염 후 5일째에 두 세포주 모두 모든 FBS 농도에서 유사한 증식량을 보였으나, 감염 후 2 일과 3일에 있어서는 Sf21 은 각각 10%와 3%가 Bm5 에 대해서는 양일 모두 5% FBS 농도에서 가장 증식량이 높았다. 이러한 결과는 목적에 따라 세포 및 바이러스 증식을 위한 적정 FBS 농도의 결정이 필요함을 제시하는 것이다.

Keywords

References

  1. Broussard, D.R. and M.D. Summers. 1989. Effects of serum concentration and media composition on the level of polyhedrin and foreign gene expression by baculovirus vectors. J. Invertebr. Pathol. 54: 144-150 https://doi.org/10.1016/0022-2011(89)90023-2
  2. Goodwin, R.H. 1975. Insect cell culture: improved media and methods for initiating attached cell lines from the Lepidoptera. In Vitro, 11: 369-378 https://doi.org/10.1007/BF02616373
  3. Hong, H.K., S.D. Woo, J.Y. Choi, H.K. Lee, M.H. Kim, Y.H. Je, and S.K. Kang. 2000. Characterization of four isolates of Bombyx mori nucleopolyhedrovirus. Arch. Virol. 145: 2351-2361 https://doi.org/10.1007/s007050070025
  4. Ikonomou, L., Y.J. Schneider and S.N. Agathos. 2003. Insect cell culture for industrial production of recombinant proteins. Appl. Microbiol. Biotechnol. 62: 1-20 https://doi.org/10.1007/s00253-003-1223-9
  5. Joshi, L., T.R. Davis, T.S. Mattu, P.M. Rudd, R.A. Dwek, M.L. Shuler, M. L. and H.A. Wood. 2000. Influence of baculovirushost cell interactions on complex N-linked glycosylation of a recombinant human protein. Biotechnol. Prog. 16: 650-656 https://doi.org/10.1021/bp000057p
  6. King, G., J. Kuzio, A. Daugulis, P. Faulkner, B. Allen, J. Wu and M. Goosen. 1991. Assessment of virus production and chloramphenicol acetyl transferase expression by insect cells in serum-free and serum-supplemented media using a temperature sensitive baculovirus. Biotechnol. Bioeng. 38: 1091-1099 https://doi.org/10.1002/bit.260380918
  7. Maeda, S., T. Kawai, M. Obinata, H. Fujiwara, T. Horiuchi, Y. Saeki, Y. Soto and M. Furusawa. 1985. Production of human a-interferon in silkworm using a baculovirus vector. Nature 315: 592-594 https://doi.org/10.1038/315592a0
  8. Nielsen, L.K. 2000. Virus production from cell culture, kinetics. pp 1217-1230. In The encyclopedia of cell technology, ed. by R.E. Spier. Wiley, New York
  9. O'Reilly, D.R., L.K. Miller and V.A. Luckow. 1992. Baculovirus expression vectors: a laboratory manual. 347 pp. Freeman, New York
  10. Petricevich, V.L., L.A. Palomares, M. Gonzalez and O.T. Ramirez. 2001. Parameters that determine virus adsorption kinetics: toward the design of better infection strategies for the insect cellbaculovirus expression system. Enzyme Microb. Technol. 29: 52-61 https://doi.org/10.1016/S0141-0229(01)00323-4
  11. Power, J.F., S. Reid, P.F. Greenfield and L.K. Nielsen. 1996. The kinetics of baculo virus adsorption to insect cells in suspension culture. Cytotechnology, 21: 155-163 https://doi.org/10.1007/BF02215665
  12. Smith, G.E., M.D. Summers and M.J. Fraser. 1983. Production of human ${\beta}$-interferon in insect cells infected with a baculovirus expression vector. Mol. Cell. Biol. 3: 2156-2165 https://doi.org/10.1128/MCB.3.12.2156
  13. Taticek, R.A. and M.L. Shuler. 1997. Effect of elevated oxygen and glutamine levels on foreign protein production at high cell densities using the insect cell-baculovirus expression system. Biotechnol. Bioeng. 54: 142-152 https://doi.org/10.1002/(SICI)1097-0290(19970420)54:2<142::AID-BIT6>3.0.CO;2-L
  14. Taticek, R.A., C. Choi, S.E. Phan, L.A. Palomares and M.L. Shuler. 2001. Comparison of growth and recombinant protein expression in two different insect cell lines in attached and suspension culture. Biotechnol. Prog. 17: 676-684 https://doi.org/10.1021/bp010061g
  15. Wickham, T.J., R.R. Granados, H.A. Wood, D.A. Hammer and M.L. Shuler. 1990. General analysis of receptor-mediated viral attachment to cell surfaces. Biophys. J. 58: 1501-1516 https://doi.org/10.1016/S0006-3495(90)82495-4
  16. Yunker, C.E., J.L. Vaughn and J. Cory. 1967. Adaptation of an insect cell line (Grace's Antheraea cells) to medium free of insect hemolymph. Science, 155: 1565-1566 https://doi.org/10.1126/science.155.3769.1565
  17. Zhang, J., N. Kalogerakis, L.A. Behie and K. Iatrou. 1992. Investigation of reduced serum and serum-free media for the cultivation of insect cells (Bm5) and the production of baculovirus (BmNPV). Biotechnol. Bioeng. 40: 1165-1172 https://doi.org/10.1002/bit.260401005