Biodegradation of Endocrine-disrupting Bisphenol A by White Rot Fungus Irpex lacteus

  • Shin, Eun-Hye (Division of Life Sciences and Research Institute of Life Sciences, Kangwon National University) ;
  • Choi, Hyoung-Tae (Division of Life Sciences and Research Institute of Life Sciences, Kangwon National University) ;
  • Song, Hong-Gyu (Division of Life Sciences and Research Institute of Life Sciences, Kangwon National University)
  • Published : 2007.07.31

Abstract

Biodegradation of endocrine-disrupting bisphenol A was investigated with several white rot fungi (Irpex lacteus, Trametes versicolor, Ganoderma lucidum, Polyporellus brumalis, Pleurotus eryngii, Schizophyllum commune) isolated in Korea and two transformants of T. versicolor (strains MrP 1 and MrP 13). I. lacteus degraded 99.4% of 50 mg/l bisphenol A in 3 h incubation and 100% in 12 h incubation. which was the highest degradation rate among the fungal strains tested. T. versicolor degraded 98.2% of 50 mg/l bisphenol A in 12 h incubation. Unexpectedly, the transformant of the Mn-repressed peroxidase gene of T. versicolor, strain MrP 1, degraded 76.5% of 50 mg/l bisphenol A in 12 h incubation, which was a lower degradation rate than wild-type T. versicolor. The removal of bisphenol A by I. lacteus occurred mainly by biodegradation rather than adsorption. Optimum carbon sources for biodegradation of bisphenol A by I. lacteus were glucose and starch, and optimum nitrogen sources were yeast extract and tryptone in a minimal salts medium; however, bisphenol A degradation was higher in nutrient-rich YMG medium than that in a minimal salts medium. The initial degradation of endocrine disruptors was accompanied by the activities of manganese peroxidase and laccase in the culture of I. lacteus.

Keywords

References

  1. Chai, W., Y. Handa, M. Suzuki, M. Saito, N. Kato, and C. Horiuchi. 2005. Biodegradation of bisphenol A by fungi. Appl. Biochem. Biotechnol. 120: 175-182 https://doi.org/10.1385/ABAB:120:3:175
  2. Chakraborty, J. and T. Dutta. 2006. Isolation of a Pseudomonas sp. capable of utilizing 4-nonylphenol in the presence of phenol. J. Microbiol. Biotechnol. 16: 1740-1746
  3. Colborn, T., D. Dumanoski, and J. Myers. 1996. Our Stolen Future. Dutton, New York, U.S.A
  4. Gohel, V., D. Jiwan, P. Vyas, and H. Chhatpar. 2005. Statistical optimization of chitinase production by Pantoea dispersa to enhance degradation of Crustacean chitin waste. J. Microbiol. Biotechnol. 15: 197-201
  5. Han, M., H. Choi, and H. Song. 2005. Purification and characterization of laccase from the white rot fungus Trametes versicolor. J. Microbiol. 43: 555-560
  6. Hirano, T. H., Y. Honda, T. Watanabe, and M. Kuwahara. 2000. Degradation of bisphenol A by the lignin-degrading enzyme, manganese peroxidase, produced by the white-rot basidiomycete, Pleurotus ostreatus. Biosci. Biatechnol. Biachem. 64: 1958-1962 https://doi.org/10.1271/bbb.64.1958
  7. Kang, J. H. and F. Kondo. 2002. Bisphenol A degradation by bacteria isolated from river water. Arch. Environ. Contam. Toxicol. 43: 265-269 https://doi.org/10.1007/s00244-002-1209-0
  8. Kang, J. H., N. Ri, and F. Kondo. 2004. Streptomyces sp. strain isolated from river water has high bisphenol A degradability. Lett. Appl. Microbiol. 39: 178-180 https://doi.org/10.1111/j.1472-765X.2004.01562.x
  9. Kang, J. H., Y. Katayama, and F. Kondo. 2006. Biodegradation or metabolism of bisphenol A: From microorganism to mammals. Toxicology 217: 81-90 https://doi.org/10.1016/j.tox.2005.10.001
  10. Kim, H. and H. Song. 2000. Transformation of 2,4,6-trinitrotoluene by white rot fungus Irpex lacteus. Biotechnol. Lett. 22: 969-975 https://doi.org/10.1023/A:1005636914121
  11. Kim, H. and H. Song. 2003. Transformation and mineralization of 2,4,6-trinitrotoluene by the white rot fungus Irpex lacteus. Appl. Microbiol. Biotechnol. 61: 150-156 https://doi.org/10.1007/s00253-002-1211-5
  12. Kim, Y. 2005. Cloning and expression analysis of manganesedependent peroxidase and Mn-repressed peroxidase, overexpression of its gene by genetic transformation. Dissertation for the degree of M.Sc., Dept. Microbiol., Graduate School, Kangwon National University
  13. Kim, J., H. W. Ryu, D. J. Jung, T. H. Lee, and K.-S. Cho. 2005. Styrene degradation in a polyurethane inoculated with Pseudomonas sp. IS-3. J. Microbiol. Biotechnol. 15: 1207-1213
  14. Kim, Y.-J. and J. Nicell. 2006. Laccase-catalyzed oxidation of bisphenol A with the aid of additives. Process Biochem. 41: 1029-1037 https://doi.org/10.1016/j.procbio.2005.11.012
  15. Lee, Y., C. Park, B. Lee, E. Han, T. Kim, J. Lee, and S. Kim. 2006. Effect of nutrients on the production of extracellular enzymes for decolorization of reactive blue 19 and reactive black 5. J. Microbiol. Biotechnol. 16: 226-231
  16. Maffini, M., B. Rubin, C. Sonnenschein, and A. Soto. 2006. Endocrine disruptors and reproductive health: The case of bisphenol-A. Mol. Cell. Endocrinol. 254-255: 179-186
  17. Modaressi, K., K. Taylor, J. Bewtra, and N. Biswas. 2005. Laccase-catalyzed removal of bisphenol-A from water: Protective effect of PEG on enzyme activity. Wat. Res. 39: 4309-4316 https://doi.org/10.1016/j.watres.2005.08.005
  18. Reddy, C. A. 1995. The potential for white-rot fungi in the treatment of pollutants. Curr. Opin. Biotechnol. 6: 320-328 https://doi.org/10.1016/0958-1669(95)80054-9
  19. Ross, I. K. 1982. The role of laccase in carpophore initiation in Coprinus congregatus. J. Gen. Microbol. 128: 2763-2770
  20. Saito, T, K. Kato, Y. Yokogawa, M. Nishida, and N. Yamashita. 2004. Detoxification of bisphenol A and nonylphenol by purified extracellular laccase from a fungus isolated from soil. J. Biosci. Bioeng. 98: 64-66 https://doi.org/10.1016/S1389-1723(04)70243-1
  21. Song, H. 1997. Biodegradation of aromatic hydrocarbons by several white-rot fungi. J. Microbiol. 35: 66-71
  22. Staples, C., P. Dom, G. Klecka, S. O'Block, and L. Harris. 1998. A review of the environmental fate, effects, and exposures of bisphenol A. Chemosphere 36: 2149-2173 https://doi.org/10.1016/S0045-6535(97)10133-3
  23. Susiarjo, M., T. Hassold, E. Freeman, and P. Hunt. 2006. Bisphenol A exposure in utero disrupts early oogenesis in the mouse. PLoS Genet. 3: 1-8
  24. Tien, K. and T. Kirk. 1998. Lignin peroxidase of Phanerochaete chrysosporium. Methods Enzymol. 161: 813-817
  25. Zhang, F., J. Knapp, and K. Tapley. 1999. Decolourisation of cotton bleaching effluent with wood rotting fungus. Wat. Res. 33: 918-928