DOI QR코드

DOI QR Code

유도결합 플라즈마 식각시 bias에 의한 GaAs(100) 표면의 형태 변화

Morphology Evolution of GaAs(100) Surfaces during Inductively Coupled Plasma Etching at Biased Potential

  • 이상호 (캘리포니아 주립대학 재료공학과)
  • Lee, Sang-Ho (Department of Materials Science and Engineering, University of California)
  • 발행 : 2007.07.30

초록

[ $BCl_3-Cl_2$ ] 플라즈마에서 GaAs(100)의 이온 강화 식각 시 source power에 따른 표면 형태 변화를 연구하였다. Floating 전위에서는 이온 포격(bombardment)이 거의 없고, 화학적 반응에 의존한 순수한 습식 식각에 의해 나타나는 것과 같이 <110> 능선과 {111} 표면으로 이루어졌다. 900 W 정도의 높은 source power에서는 결정학적 표면이 잘 형성되지만, 100 W 정도의 낮은 source power에서는 결정학적 표면이 형성되지 않는다. 이것은 건식 식각에 필수적인 Cl 원자와 같은 여기된 반응성 물질의 양이 source power에 크게 좌우되기 때문이다. 높은 source power에서는 반응성 물질의 농도가 높아지고, GaAs(100) 표면은 열역학적으로 가장 안정한 표면이 된다. 반면에 반응성 물질이 부족할 경우에는 표면 형태는 sputtering에 의해 결정된다. Scaling theory에 기초한 표면의 통계적 분석 적용 시, 두 개의 spatial exponent가 발견 되었다. 하나는 1 보다 작고 원자 수준의 표면형태 형성 기구에 의해 결정되고, 다른 하나는 1보다 크며 facet 형성 기구와 같이 큰 규모의 형태 형성 기구에 의한 결과로 생각된다. 시료들에 bias가 인가 되면, 표면에 포격이 일어난다. 그 결과 높은source power에서 능선 형성이 억제되고, 낮은 source power에서는 섬들의 형성이 억제된다.

We present the morphological evolution at different source powers in the ion-enhanced etching of GaAs(100) in $BCl_3-Cl_2$ plasma. With little ion bombardment at floating potential, the surface develops <110> ridges and {111} facets, as it does in purely chemical etching. Higher source power (900 W) produces well developed crystallographic surfaces while lower source power (100 W) produces poorly developed crystallographic surfaces. This is attributed to the availability of excited reactive species (chlorine atoms) depending on source powers. With more concentration of the reactive species at higher source powers, the surface of GaAs(100) would be a surface that is expected from thermodynamics while the surface morphology would be determined by sputtering in the lack of reactive species. Statistical analysis of the surfaces, based on scaling theory, revealed two spatial exponents: one (smaller than one) is formed by atomic scale mechanisms, the other (larger than one) is formed by larger scale mechanisms which is believed to develop facets. When samples are biased, the surfaces experienced bombardment resulting in suppression of ridge formation at high source power and islands formation at low source power.

키워드

참고문헌

  1. H.P. Gillis, 'Etching and Deposition,' in John Moore and Nicholas Spencer (eds.) Encylopedia of Chemical Physics and Physical Chemistry, (Institute of Physics, Philadelphia, PA, 2001). Chapter 2.18, pp. 2613-2630
  2. C. Steinbruchel, Appl. Phys. Lett. 55, 1960 (1989) https://doi.org/10.1063/1.102336
  3. J.W. Coburn and H.F. Winters, J. Appl. Phys. 50, 3189 (1979) https://doi.org/10.1063/1.326355
  4. H.F. Winters and J.W. Coburn, Surf. Sci. Rep. 14, 161 (1992)
  5. L. Sha, R. Puthenkovilkam, Y.-S. Lin, and J.P. Chang J. Vac. Sci. Tech. B 21, 2420 (2003) https://doi.org/10.1116/1.1627333
  6. T. Ohmi, K. Kotani, A. Teramoto, and M. Miyashita, IEEE Electron Device Lett. 12, 652 (1991) https://doi.org/10.1109/55.116944
  7. K.K. Ko, K. Kamath, O. Zia, E. Berg, S.W. Pang, and P. Bhattacharya, J. Vac. Sci. Tech. B 13, 2709 (1995)
  8. M.E.R. Dotto and M.U. Kleinke, Physica A 295, 149 (2001) https://doi.org/10.1016/S0378-4371(01)00068-1
  9. M. Saitou, M. Hokama, and W. Oshikawa, Appl. Surf. Sci. 185, 79 (2001) https://doi.org/10.1016/S0169-4332(01)00654-7
  10. T. Ngo, E.J. Snyder, W.M. Tong, R.S. Williams, and M.S. Anderson, Surf. Sci. 314, L817 (1994) https://doi.org/10.1016/0039-6028(94)90201-1
  11. E.A. Eklund, R. Bruinsma, J. Rudnick, and R.S. Williams, Phy. Rev. Lett. 67, 1759 (1991) https://doi.org/10.1103/PhysRevLett.67.1759
  12. Z. Maktadir, K. Sato, A. Mastumuro, K. Kayukawa, and M. Shikida, Mat. Res. Soc. Symp. Proc. 605, 305 (2000)
  13. Wafer Technology Ltd. (UK)에서 구매
  14. E. Hu and C.H. Chen, Microelectronic Engineering 35, 23 (1997) https://doi.org/10.1016/S0167-9317(96)00123-2
  15. W.M. Tong and R.S. Williams, Annu. Rev. Phys. Chem. 45, 401 (1994) https://doi.org/10.1146/annurev.pc.45.100194.002153
  16. A.-L. Barabasi, and H.E. Stanley, Fractal concepts in Surface Growth, Cambridge University Press, 1995
  17. M.A. Lieberman and A.J. Lichtenberg, Principles of Plasma Discharges and Materials Processing, (John Wiley & Sons, Inc., New York,1994.)
  18. F.F. Chen and J.P. Chang, Lecture Notes on Principles of Plasma Processing, (Kluwer Academic/Plenum Publishers, New York, 2003)
  19. D.C. Hays, Selective Etching of Compound Semiconductors, M.S. Thesis, University of Florida, Gainesville, 1999. p.100
  20. M.A. Lieberman and A.J. Lichtenberg, Principles of Plasma Discharges and Materials Processing, (John Wiley & Sons, Inc., New York, 1994.) p. 161
  21. I.I. Amirov, M.O. Izyumov, and O.V. Morozov, High Energy Chemistry 328, (2003)
  22. J.P. Chang, J.C. Arnold, G.C.H. Zau, H.-S. Shin, and H.H. Sawin, J. Vac. Sci. Tech. A 15, 1853 (1997)
  23. J.P. Chang, A.P. Mahorowala, and H.H. Sawin, J. Vac. Sci. Tech. A 16, 217 (1998) https://doi.org/10.1116/1.580974
  24. C. Steinbruchel, Appl. Phys. Lett. 55, 1960 (1989) https://doi.org/10.1063/1.102336
  25. J. Ding et. al., J. Vac. Sci. Technol. A 11, 1283 (1993) https://doi.org/10.1116/1.578540
  26. D.J. Whitehouse, Meas. Sci. Technol. 8, 955 (1997) https://doi.org/10.1088/0957-0233/8/9/002
  27. T. Ngo, E.J. Snyder, W.M. Tong, R.S. Williams, and M.S. Anderson, Surf. Sci. 314, L817 (1994) https://doi.org/10.1016/0039-6028(94)90201-1
  28. S.H. Lee, C. Ratsch, H.P. Gillis, Appl. Phys. Lett., 88, 161916 (2006) https://doi.org/10.1063/1.2196063
  29. D.W. Shaw, J. Crystal Growth 47, 509 (1979) https://doi.org/10.1016/0022-0248(79)90133-7
  30. D.W. Shaw, J. Electrochem. Soc. 128, 874 (1981) https://doi.org/10.1149/1.2127524
  31. M. Heyen and P. Balk, J. Crystal Growth, 53, 558 (1981) https://doi.org/10.1016/0022-0248(81)90139-1
  32. D.E. Ibbotson, D. L. Flamm, and V.M. Donnelly, J. Appl. Phys. 54, 5974 (1983) https://doi.org/10.1063/1.331775
  33. H.P. Gillis et al., Appl. Phys. Lett. 68, 2255 (1996) https://doi.org/10.1063/1.115876
  34. C.-H. Choi, L. Hultman, and S.A. Barnett, J. Vac. Sci. Tech. A 8, 1587 (1990) https://doi.org/10.1116/1.576770
  35. S. Rohde, S.A. Barnett, and C.-H. Choi, J. Vac. Sci. Tech. A 7, 2273 (1989) https://doi.org/10.1116/1.575927
  36. J.E. Greene, S.A. Burnett, J.-E. Sundgren, and A. Rockett, in T. Itoh (ed.), Ion Beam Assisted film Growth, (Elsevier, New York, 1989), Chapter 5
  37. M. Kitabatake, P. Fons, and J.E. Greene, J. Vac. Sci. Technol. A 8, 3726 (1990) https://doi.org/10.1116/1.576486
  38. C.-H. Choi, R. Ai, and S.A. Barnett, Phys. Rev. Lett. 67, 2826 (1991) https://doi.org/10.1103/PhysRevLett.67.2826
  39. M.V. Ramana Murty, et. al., Phys. Rev. Lett. 80, 4713 (1998) https://doi.org/10.1103/PhysRevLett.80.4713
  40. C. Steinbruchel, Appl. Phys. Lett. 55, 1960 (1989) https://doi.org/10.1063/1.102336
  41. 이상호, 한국진공학회지, 제16권, 15 (2007) https://doi.org/10.5757/JKVS.2007.16.1.015