Isolation and Identiffication of Acinetobacter koreensis sp. nov. from Jang-Baek Waterfall

장백 폭포에서 분리한 Acinetobacter koreensis sp. nov.의 보고

  • Lee, Ha-Yan (Department of Biological Engineering, Kyonggi University) ;
  • Yoo, Yong-Kyu (Korea Environmental Microorganism Center, Kyonggi University) ;
  • Seo, Pil-Soo (Depart-ment of Korea Biological Resourse Center, Kyonggi University) ;
  • Lee, Jung-Sook (Korean Collection for Type Cultures, Korea Research Institute of Bioscience and Biotechnology) ;
  • Lee, Keun-Chul (Korean Collection for Type Cultures, Korea Research Institute of Bioscience and Biotechnology) ;
  • Lee, Sang-Seob (Department of Biological Engineering, Kyonggi University)
  • 이하얀 (경기대학교 생명공학과) ;
  • 유용규 (경기대학교 환경산업미생물 및 유전자은행) ;
  • 서필수 (경기대학교 생물자원 특성화 사업단) ;
  • 이정숙 (한국생명공학연구원 생물자원센터) ;
  • 이근철 (한국생명공학연구원 생물자원센터) ;
  • 이상섭 (경기대학교 생명공학과)
  • Published : 2007.03.31

Abstract

Two isolates of genus Acinetobacter were obtained from Jang-Baek waterfall in North Korea. Morphological characteristics of the isolated 2 strains were Gram-negative, aerobic and rod shape bacteria. Physiological and biochemical characterization of the isolated 2 strains were some different aspect from those of type strains. 16S rDNA sequence analysis showed that the two isolates shared 99.9% sequence similarity. Strains JB10 and $JB15^{T}$ were shown to belong to the Gammaproteobacteria and showed the highest levels of sequence similarity to Acinetobacter tandoii $4N13^{T}$ (97.3%), Acinetobacter haemolyticus $ATCC17906^{T}$ (97.2%), Acinetobacter johnsonii $DSM6963^{T}$ (97.2%), Acinetobacter junii $DSM6964^{T}$ (96.7%), Acinetobacter schindleri $LUH5832^{T}$ (97.0%) and Acinetobacter ursingii $LUH3792^{T}$ (96.6%). The major cellular fatty acid in Acinetobacter type strains and isolated strains included $C_{18:1}\;{\omega}9c\;and\;C_{16:1}\;{\omega}7c/C_{15:0}\;iso\;2OH$. Eventhough it was ascertained that the isolated strains were closely related to genus Acinetobacter, physiological and biochemical characteristics and the result of the isolated strains 16S rDNA analysis indicate some different aspects from those of type strains of genus Acinetohacter It is considered that the isolated JB10 (=KEMC 52-093) and $JB15^{T}\;(=KEMC\;52-094^{T})$ strains be new species of genus Acinetobacter. We name it as Acinetobacter koreensis sp. nov.

JB10과 $JB15^{T}$ 균주들은 양강도 삼지연군의 북서부에 위치한 백두산에 있는 장려 폭포의 폭포수에서 분리되었다. 그람 음성의 호기성 균주로서, 약$0.9-1.6{\times}1.5-2.5\;{\mu}m$의 짧은 간균이었다. JB10, $JB15^{T}$ 균주들과 표준 균주들은 생리 생화학 특성 실험에서 서로 차이점을 보였다. JB10과 $JB15^{T}$ 균주들의 16S rDNA 염기서열을 분식한 결과 ${\gamma}-proteobacteria$에 속하였으며, Acinetobacter tandoii 4N13T (97.3%), Acinetobacter haemolyticus $ATCC17906^{T}$ (97.2%), Acinetobacter johnsonii $DSM6963^{T}$ (97.2%), Acinetobaoter junii $DSM6964^{T}$ (96.7%), Acinetobacter schindleri $LUH5832^{T}$ (97.0%) 및 Acinetobacter ursingii $LUH3792^{T}$ (96.6%)와 높은 유사도치 염기서열 상동성을 보여주었다. 그리고 이 외의 표준 균주들과는 93-96%의 염기서열 상동성을 보였다. 균체 지장산 분석 결과주요 지방산으로 $C_{18:1}\;{\omega}9c$$C_{16:1}\;{\omega}7c/C_{15:0}\;iso\;2OH$를 함유하고 있는 것을 확인하였으며, 흥미롭게도 $JB15^{T}$ 균주에서 $C_{19:1}\;iso\;I$이 검출되었다. 이상과 같이 생리 생화학적 특성, 16S rDNA 염기서열 분석 결과 및 균체 지방산분석 결과에서 선별된 JB10과 $JB15^{T}$ 균주들이 표준 균주들과는 다른 특성을 나타내는 것으로 확인되어 JB10 (=KEMC 52-093)과 $JB15^{T}$ ($=KEMC\; 52-094^{T}$) 균주들을 Acinetobacter koreensis sp. nov.로 동정하였다.

Keywords

References

  1. Ashraf, I., G.S. Peter, and L. Werner. 1997. Phylogenetic relationship of the twenty-one DNA groups of the genus Acinetobacter as revealed by 16S ribosomal DNA sequence analysis. Int. J. Syst. Eval. Microbiol. 47, 837-841 https://doi.org/10.1099/00207713-47-3-837
  2. Ausubel, F.M. R. Brent, R.E. Kingston, D.D. Moore, J. G. Seidman, J.A. Smith, and K. Struhl. 2002. Short Protocols in Molecular Biology 5th ed., p. 2-11, Wiley, USA
  3. Bouvet, P.J.M. and P.A.D. Grimont. 1986. Taxonomy of the genus Acinetobacter with the recognition of Acinetabacter baumannii sp. nov., Acinetobacter haemolyticus sp. nov., Acinetobacter johnsonii sp. nov., and Acinetobacter junii sp. nov. and emended description of Acinetobacter calcoaceticus and Acinetobacter lwoffii. Int. J. Syst. Bacteriol. 36, 228-240 https://doi.org/10.1099/00207713-36-2-228
  4. Bouvet, P.J.M. and S. Jeanjean. 1989. Delineation of new proteolytic genomic species in the genus Acinetobacter. Res. Microbiol. 140, 291-299 https://doi.org/10.1016/0923-2508(89)90021-1
  5. Brenner, D.J., N.R. Krieg, and J.T. Staley. 2005. Bergey's manual of systematic bacteriology 2nd ed. The Williams & Wilkins Co., Baltimore, Maryland, USA
  6. Cappuccino, J.G and N. Sherman. 2001. Microbiology: A Laboratory Manual, 6th ed., Benjamin-Cummings Publishing Company
  7. Emma, L.C., K. Peter, K.C.P. Bharat, G. Volker, and R.J. Seviour. 2003. Seven novel species of Acinetobacter isolated from activated sludge. Int. J. Syst. Evol. Microbiol. 53, 953-963 https://doi.org/10.1099/ijs.0.02486-0
  8. Felsenstein, J. 1985. Confidence limits on phylogenies, an approach using the bootstrap. Evolution. 39, 783-791 https://doi.org/10.2307/2408678
  9. Juni, E. 1972. Interspecies transformation of Acinetobaeter: genetic evidence for a ubiquitous genus. J. Bacteriol. 47, 837-841
  10. Loubinoux, J., L. Mihaila-Arnrouche, A.L. Fleche, E. Pigne, G. Huchon, P.A.D. Grimont, and A. Bouvet. 2003. Bacteremia caused by Acinetobacter ursingii. J. Clin. Microbiol. 41, 1337-133 https://doi.org/10.1128/JCM.41.3.1337-1338.2003
  11. Makula, R.A. and W.R. Finnerty. 1972. Microbiol assimilation of hydrocarbone : cellular distribution of fatty acids. J. Bacteriol. 112, 398-407
  12. MacFaddin, J.F., L. McGrew, A. Heubeck, D. Hartman, and K. Ruppert. 2000. Biochemical tests for identification of medical bacteria. 3rd edition. Lippincott Williams & Wilkins
  13. Misbah, S., H. Hassan, M.Y. Yusof, Y.A. Hanifah, and S. Abubakar. 2005. Genomic species identification of Acinetobacter of clinical isolates by 16S rDNA sequencing. Singapore. Med. J. 46,461
  14. Nemec, A., D.T. Baere, I. Tjernberg, M. Vaneechoutte, T.J.K. Reijden, and L. Dijkshoom. 2001. Acinetobacter ursingii sp. nov. and Acinetobacter schindleri sp. nov., isolated from human clinical specimens. Int. J. Syst. Evol. Microbiol. 51, 1891-1899 https://doi.org/10.1099/00207713-51-5-1891
  15. Nemec, A., L. Dijkshoom, I. Cleenwerck, T. Baere, D. Janssens, T.J.K. Reijden, P. Jezek, and M. Vaneechoutte. 2003. Acinetobacter parvus sp. nov., a small-colony-forming species isolated from human clinical specimens. Int. J. Syst. Evol. Microbiol. 53, 1563-1567 https://doi.org/10.1099/ijs.0.02631-0
  16. Nishimura, Y., T. Ino, and H. Iizuka. 1988. Acinetobacter radioresistens sp. nov. isolated from cotton and soil. Int. J. Syst. Bacteriol. 38, 209-211 https://doi.org/10.1099/00207713-38-2-209
  17. Osterhout, G.J., V.H. Shull, and J.D. Dick. 1991. Identification of clinical isolates of Gram-negative nonfermentative bacteria by an automated cellular fatty acid identification system. J. Clin. Microbiol. 29, 1822-1830
  18. Saitou, N. and M. Nei. 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4, 406-425
  19. Satoshi, Y. and H. Shigeaki. 1996. Phylogenetic analysis of Acinetobacter strains based on the nucleotide sequences of gyrB genes and on the amino acid sequences of their products. Int. J. Syst. Evol. Microbiol. 46, 506-511 https://doi.org/10.1099/00207713-46-2-506