DOI QR코드

DOI QR Code

Development of the Growth and Wavelength Control Technique of In As Quantum Dots for 1.3 μm Optical Communication Devices

1.3 μm 광통신용 소자를 위한 InAs 양자점 성장 및 파장조절기술 개발

  • Park, Ho-Jin (School of Nano Engineering, Inje University, Center for Nano Manufacturing) ;
  • Kim, Do-Yeob (School of Nano Engineering, Inje University, Center for Nano Manufacturing) ;
  • Kim, Goon-Sik (School of Nano Engineering, Inje University, Center for Nano Manufacturing) ;
  • Kim, Jong-Ho (School of Nano Engineering, Inje University, Center for Nano Manufacturing) ;
  • Ryu, H.H. (School of Nano Engineering, Inje University, Center for Nano Manufacturing) ;
  • Jeon, Min-Hyon (School of Nano Engineering, Inje University, Center for Nano Manufacturing) ;
  • Leem, Jae-Young (School of Nano Engineering, Inje University, Center for Nano Manufacturing)
  • 박호진 (인제대학교 나노공학부, 나노매뉴팩쳐링연구소) ;
  • 김도엽 (인제대학교 나노공학부, 나노매뉴팩쳐링연구소) ;
  • 김군식 (인제대학교 나노공학부, 나노매뉴팩쳐링연구소) ;
  • 김종호 (인제대학교 나노공학부, 나노매뉴팩쳐링연구소) ;
  • 류혁현 (인제대학교 나노공학부, 나노매뉴팩쳐링연구소) ;
  • 전민현 (인제대학교 나노공학부, 나노매뉴팩쳐링연구소) ;
  • 임재영 (인제대학교 나노공학부, 나노매뉴팩쳐링연구소)
  • Published : 2007.07.27

Abstract

We systematically investigated the effects of InAs coverage variation, two-step annealing and an asymmetric InGaAs quantum well (QW) on the structural and optical characteristics of InAs quantum dots (QDs) by using atomic force microscopy (AFM), transmission electron microscopy (TEM) and photoluminescence (PL) measurement. The transition of size distribution of InAs QDs from bimodal to multi-modal was noticeably observed with increasing InAs coverage. By means of two-step annealing, it is found that significant narrowing of the luminescence linewidth (from 132 to 31 meV) from the InAs QDs occurs together with about 150 meV blueshift, compared to as-grown InAs QDs. Finally, the InAs QDs emitting at longer wavelength of $1.3\;{\mu}m$ with narrow linewidth were grown by an asymmetric InGaAs QW. The excited-state transition for the InAs QDs with an asymmetric InGaAs QW was not noticeably observed due to the large energy-level spacing between the ground states and the first excited states. The InAs QDs with an asymmetric InGaAs QW will be promising for the device applications such as $1.3\;{\mu}m$ optical-fiber communication.

Keywords

References

  1. L. Harris, D. J. Mowbrag, M. S. Skolnick, M. Hopkinson, G HilI, Appl. Phys. Lett., 73, 969 (1998) https://doi.org/10.1063/1.122055
  2. D. Pan, E. Towe, S. Kennerly, Appl. Phys. Lett., 73, 1937 (1998) https://doi.org/10.1063/1.122328
  3. S. Maimon, E. Finkman, G. Bahir, J. M. Garcia, P. M. Petroff, Appl. Phys. Lett., 73, 2003 (1998) https://doi.org/10.1063/1.122349
  4. A. D. Stiff, S. Krishna, P. Bhattacharya. S. W. Kennerly, IEEE J. Quantum Electron., 37, 1272 (2001) https://doi.org/10.1109/3.892718
  5. H. Lee, R. Lowe-Webb, T. J. Johnson, W. Yang and P. C. Sercel, Appi. Phys. Lett., 73, 3556 (1998) https://doi.org/10.1063/1.122805
  6. H. J. Park, J. H. Kim, J. J. Yoon, J. S. Son, D. Y. Lee, H. H. Ryu, M. H. Jeon, J. Y. Leem, J. Crystal Growth, 300, 319 (2007) https://doi.org/10.1016/j.jcrysgro.2006.11.337
  7. S. I. Jung, H. Y. Yeo, I. Yun, J. Y. Leem, I. K. Han, J. S. Kim, J. I. Lee, Physica E, 33, 280 (2006) https://doi.org/10.1016/j.physe.2006.03.150
  8. J. S. Kim, P. W. Yu and J. Y. Leem, J. I. Lee and S. K. Noh, J. S. Kim and G. H. Kim, S. K. Kang and S. I. Ban, S. G. Kim and Y. D. Jang, U. H. Lee, J. S. Vim and D. H. Lee, J. Crystal Growth, 234, 105 (2002) https://doi.org/10.1016/S0022-0248(01)01665-7
  9. J. S. Kim, J. H. Lee, S. U. Hong, W. S. Han and H. S. Kwack, C. W. Lee and D. K. Oh, J. Appl. Phys., 94, 6603 (2003) https://doi.org/10.1063/1.1621714
  10. S. J. Lee, S. K. Noh, J. W. Choe, E. K. Kim, J. Crystal Growth, 267, 406 (2004)
  11. Z. M. Zhao, O. Hul' ko, H. J. Kim, J. Liu, B. Shi, Y. H. Xie, Thin Solid Films, 483, 158 (2005) https://doi.org/10.1016/j.tsf.2005.01.003
  12. U.W. Pohl, K. POtschke, A. Schliwa, M. B. Lifshits, V. A. Shchukin, D. E. Jesson, D. Bimberg, Physica E, 32, 9 (2006) https://doi.org/10.1016/j.physe.2005.12.145
  13. B. Ilahi, L. Sfaxi, H. Maaref, G. Bremond, G. Guillot, Superlattices and Microstructures, 36, 56 (2004) https://doi.org/10.1016/j.spmi.2004.08.002
  14. T. M. Hsu, Y. S. Lan, W.- H. Chang, N. T. Yeh, J. - I. Chyi, Appl. Phys. Lett., 76, 691 (2000) https://doi.org/10.1063/1.125863
  15. S. J. Xu, XC. Wang, S. J. Chua, C. H. Wang, W. J. Fan, J. Jiang, X G. Xie, Appl. Phys. Lett., 72, 25 (1998) https://doi.org/10.1063/1.120635
  16. S. J. Chua, S. J. Xu, C. H. Wang, W. J. Fan J. Jiang, X. G. Xie, in Proceedings of the 9th International Workshop on Physics of Semiconductor Devices, Narosa, India, 1997, p. 11-174
  17. N. Perret, D. Morris, L. Frachomme-Fosse, R. Cote, S. Fafard, V. Aimez, J. Beauvais, Phys. Rev., B62, 5092 (2000) https://doi.org/10.1103/PhysRevB.62.5092
  18. S. Malik, C. Roberts, R. Murray, M. Pate, Appl. Phys. Lett., 71, 1987 (1997) https://doi.org/10.1063/1.119763
  19. J. S. Kim, J. H. Lee and S. U. Hong, W. S. Han, H. S. Kwack, D. K. Oh, J. Crystal Growth, 255, 61 (2003)