pH Responsive Fibers Based on Acrylonitrile Copolymers: Effect of Bulky Side Group on Response and Mechanical Properties

  • Sahoo, Anasuya (Department of Textile Technology, Indian Institute of Technology) ;
  • Jassal, Manjeet (Department of Textile Technology, Indian Institute of Technology) ;
  • Agarwal, Ashwini K. (Department of Textile Technology, Indian Institute of Technology)
  • Published : 2007.06.30

Abstract

pH responsive fibers were fabricated from a set of architecturally designed copolymers of acrylonitrile and acrylic acid derivatives. The copolymers, which were prepared in a block type structure using method of regulated dozing, were found to impart a domain morphology to the spun fibers [1,2]. This morphology, having separate domains of acrylonotrile and acrylic acid, was found to significantly enhance both the diffusion of water through the fiber for faster response and physical bonding of chains for better mechanical properties compared to fibers prepared from random copolymers. In this study, the responsive domains of acrylic acid were modified by replacing acrylic acid (AA) with methacrylic acid (MA) in the above copolymer system. The effect of bulky side group ($-CH_{3}$) on pH response and mechanical properties of the pH responsive fibers were investigated. Thus, pH sensitive block copolymers, poly(acrylonitrile-co-acrylic acid:58:42) (AA40B) and poly(acrylonitrile-co-methacrylic acid:57:43) (MA30B), were synthesized using regulated dosing of more reactive monomer-acrylic acid/methacrylic acid monomers by free radical polymerization. The copolymers were converted to fibers by solution spinning and annealed at $120^{\circ}C$ to get a stable morphology. The annealed fibers exhibited reversible response to changing pH and were stable to repeated cycling. Expectedly, the fibers from MA30B showed significantly higher volumetric swelling at 5010% compared to 3610% in AA40B. The results implied that the presence of bulky $-CH_{3}$ group in methacrylic acid, could open up the responsive domains of the fibers. However, the bulky group also affected the bonding in the acrylonitrile domains indicated by somewhat lower mechanical properties of the fibers.

Keywords

References

  1. A. Sahoo, M. Jassal, and A. K. Agrawal, J Appl Polym Sci, In press
  2. A. Sahoo, K. R. T. Ramasubramani, M. Jassal, and A. K. Agrawal, 'Effect of Copolymer Architecture on the Response of pH Sensitive Fibers Based on Acrylonitrile and Acrylic Acid', European Polym J, 2007, 43(3), 1065-1076 https://doi.org/10.1016/j.eurpolymj.2006.11.031
  3. M. Jassal, A. K. Agrawal, A. Vishnoi, and N. S. Save, 'Temperature Responsive Fibers with Anisotropic Transitional Behavior', J Appl Polym Sci, 2005, 95, 681-688 https://doi.org/10.1002/app.21217
  4. N. S. Save, M. Jassal, and A. K. Agrawal, 'Stimuli Sensitive Copolymer Poly(N-tert-butylacrylamide-ranacrylamide). Processing into Thin Films and Their Transitional Behaviour', Polymer, 2003, 44, 7979-7988 https://doi.org/10.1016/j.polymer.2003.10.029
  5. N. S. Save, M. Jassal, and A. K. Agrawal, 'Stimuli Sensitive Copolymer Poly(N-tert-butylacrylamide-ranacrylamide): Synthesis and Characterization', J Appl Polym Sci, 2005, 95, 672-680 https://doi.org/10.1002/app.21216
  6. N. S. Save, M. Jassal, and A. K. Agrawal, 'Smart Breathable Fabric', J Industrial Textiles, 2005, 34, 139-155 https://doi.org/10.1177/1528083705047905
  7. I. Ohmine and T. J. Tanaka, 'Salt Effects on the Phase Transition of Ionic Gels', Chem Phys, 1982, 77, 5725-5729
  8. S. J. Kim, M. S. Shin, S. J. Park, and S. J. Kim, 'Characteristics of Electrical Responsive Chitosan/polyallyl-amine Interpenetrating Polymer Network Hydrogel', J Appl Polym Sci, 2002, 86, 2290-2295 https://doi.org/10.1002/app.11217
  9. T. Tanaka, I. Nishio, S.-T. Sung, and S. U. Nishio, 'Collapse of Gels in an Electric Field', Science, 1982, 218, 467-469 https://doi.org/10.1126/science.218.4571.467
  10. M. E. Byrne, K. Park, and N. A. Pappas, 'Molecular Imprinting within Hydrogels', Adv Drug Delivery Reviews, 2002, 54, 149-161 https://doi.org/10.1016/S0169-409X(01)00246-0
  11. A. Serres, M. Baudys, and S. W. Kim, 'Temperature and pH-sensitive Polymers for Human Calcitonin Oral Delivery', Pharmaceutical Research, 1996, 13(2), 196-201 https://doi.org/10.1023/A:1016026711364
  12. M. Shahinpoor, 'Micro-Electro-Mechanics of Ionic Polymeric Gels as Electrically Controllable Artificial Muscles', J Intell Mater Syst Struc, 1995, 6, 307-314 https://doi.org/10.1177/1045389X9500600302
  13. D. Brock, W. Lee, D. Segalman, and W. Witkowski, 'A Dynamic Model of a Linear Actuator Based on Polymer Hydrogel', J Intell Mater Syst Struc, 1994, 5, 764-771 https://doi.org/10.1177/1045389X9400500606
  14. K. Choe and K. J. Kim, 'Polyacrylonitrile Linear Actuators: Chemomechanical and Electro-chemomechanical Properties', Sensors Actuators A, 2006, 126, 165-172 https://doi.org/10.1016/j.sna.2005.09.008
  15. B. Jeong and A. Gutowska, 'Lessons from Nature: Stimuli-responsive Polymers and Their Biomedical Applications', Trends Biotechnol, 2002, 20, 305-311 https://doi.org/10.1016/S0167-7799(02)01962-5
  16. Z. Hu, X. Lu, and J. Gao, 'Hydrogel Opals', Adv Mater, 2001, 13, 1708-1712 https://doi.org/10.1002/1521-4095(200111)13:22<1708::AID-ADMA1708>3.0.CO;2-L
  17. L. H. Gan, D. G. Roshan, Y. Y. Gan, and K. C. Tam, 'Water Sorption Studies of New pH Responsive Nacryloyl-N'-methyl Piperazine and Methyl Methacrylate Hydrogels', European Polym J, 2001, 37, 1473-1478 https://doi.org/10.1016/S0014-3057(00)00250-0
  18. J. Z. Knaul, S. M. Hudson, and K. A. M. Creber, 'Improved Mechanical Properties of Chitosan Fibers', J Appl Polym Sci, 1999, 72, 1721-1732 https://doi.org/10.1002/(SICI)1097-4628(19990624)72:13<1721::AID-APP8>3.0.CO;2-V
  19. E. S. Matsuo and T. Tanaka, 'Kinetics of Discontinuous Volume-phase Transition of Gels', J Chem Phys, 1988, 89, 1695-1703 https://doi.org/10.1063/1.455115
  20. J. Fei and L. Gu, 'PVA/PAA Thermo-crosslinking Hydrogel Fiber: Preparation and pH-sensitive Properties in Electrolyte Solution', European Polym J, 2002, 38(8), 1653-1658 https://doi.org/10.1016/S0014-3057(02)00032-0
  21. J. Bandrup, E. H. Immergut, and E. A. Grulke, 'Polymer Handbook', 4th Ed., New York, John Wiley & Sons, Inc., 1999, Chap. VII-IV
  22. A. S. Brar and K. Dutta, 'Microstructure and Compositional Sequence Determination of Acrylonitrile/acrylic Acid Copolymers by NMR Spectroscopy', European Polym J, 1998, 34, 1585-1597 https://doi.org/10.1016/S0014-3057(98)00010-X
  23. A. S. Brar, K. Dutta, and G. S. Kapur, 'Complete Spectral Assignments and Microstructures of Photopolymerized Acrylonitrile Methacrylic Acid Copolymers by NMR-Spectroscopy', Macromolecules, 1995, 28, 8735-8741 https://doi.org/10.1021/ma00130a005
  24. P. Bajaj, T. V. Sreekumar, and K. Sen, 'Effect of Reaction Medium on Radical Copolymerization of Acrylonitrile with Vinyl Acids', J Appl Polym Sci, 2001, 79, 1640-1652 https://doi.org/10.1002/1097-4628(20010228)79:9<1640::AID-APP140>3.0.CO;2-7
  25. P. Bajaj, K. Sen, and S. Hajir Bahrami, 'Solution Polymerization of Acrylonitrile with Vinyl Acids in Dimethylformarnide', J Appl Polym Sci, 1996, 59, 1539-1550 https://doi.org/10.1002/(SICI)1097-4628(19960307)59:10<1539::AID-APP6>3.0.CO;2-N
  26. X. Jin and Y. L. Hsieh, 'PH-responsive Swelling Behavior of Poly(vinyl alcohol)/poly(acrylic acid) Bi-component Fibrous Hydrogel Membranes', Polymer, 2005, 46, 5149-5160 https://doi.org/10.1016/j.polymer.2005.04.066
  27. S. Hajir Bahrami, P. Bajaj, and K. Sen, 'Thermal Behavior of Acrylonitrile Carboxylic Acid Copolymers', J Appl Polym Sci, 2003, 88, 685-698 https://doi.org/10.1002/app.11637
  28. J. Fei, Z. Zhang, L. Zhong, and L. Gu, 'PVA/PAA Thermo-induced Hydrogel Fiber: Preparation and pH-sensitive Behavior in Electrolyte Solution', J Appl Polym Sci, 2002, 85, 2423-2430 https://doi.org/10.1002/app.10888
  29. M. S. Oak, T. Kobayashi, H. Y. Wang, T. Fukaya, and N. Fujii, 'PH Effect on Molecular-Size Exclusion of Polyacrylonitrile Ultrafiltration Membranes Having Carboxylic-Acid Groups', J Memb Sci, 123, 1997, 185-195 https://doi.org/10.1016/S0376-7388(96)00214-1