DOI QR코드

DOI QR Code

THE BONDING DURABILITY OF RESIN CEMENTS

레진시멘트의 접착 내구성에 관한 연구

  • Cho, Min-Woo (Department of Conservative Dentistry, Division of Dentistry, Graduate of Kyung Hee University) ;
  • Park, Sang-Hyuk (Department of Conservative Dentistry, Division of Dentistry, Graduate of Kyung Hee University) ;
  • Kim, Jong-Ryul (Department of Conservative Dentistry, Division of Dentistry, Graduate of Kyung Hee University) ;
  • Choi, Kyoung-Kyu (Department of Conservative Dentistry, Division of Dentistry, Graduate of Kyung Hee University)
  • 조민우 (경희대학교 대학원 치의학과 치과보존학교실) ;
  • 박상혁 (경희대학교 대학원 치의학과 치과보존학교실) ;
  • 김종률 (경희대학교 대학원 치의학과 치과보존학교실) ;
  • 최경규 (경희대학교 대학원 치의학과 치과보존학교실)
  • Published : 2007.03.31

Abstract

The objectives of this study was to evaluate the durability of 4 resin cements by means of microtensile bond strength test combined with thermocycling method and fractographic FE-SEM analysis. Experimental groups were prepared according to thermocycling (0, 1,000, 5,000) and the kind of resin cements, those were Variolink II, Multilink, Panavia F 2.0, Rely X Unicem. Flat dentin surfaces were created on mid-coronal dentin of extracted third molars. Then fresh dentin surface was grounded with 320-grit silicon carbide abrasive papers to create uniform smear layers. Indirect composite block (Tescera, Bisco Inc., Schaumburg, IL, USA) was fabricated ($12\;{\times}\;12\;{\times}\;6\;mm^3$). It's surface for bonding to tooth was grounded with silicon carbide abrasive papers from 180- to 600-grit serially, then sandblasted witk $20\;-\;50\;{\mu}m$ alumina oxide. According to each manufacturer's instruction, dentin surface was treated and indirect composite block was luted on it using each resin cement. For Rely X Unicem, dentin surface was not treated. The bonded tooth-resin block were stored in distilled water at $37^{\circ}C$ for 24 hours. After thermocycling, the bonded tooth-resin block was sectioned occluso-gingivally to 1.0 mm thick serial slabs using all Isomet slow-speed saw (Isomet, Buehler Ltd, Lake Bluff, IL, USA). These sectioned slabs were further sectioned to $1.0\;{\times}\;1.0\;mm^2$ composite-dentin beams. The specimens were tested with universal testing machine (EZ-Test, Shimadzu, Japan) at a crosshead speed of 1.0 mm/min with maximum load of 500 N. The data was analyzed using one-way ANOVA and Duncan's multiple comparison test at $p\;{\leq}\;0.05$ level. Within the limited results, we conclude as follows; 1. The bond strength of Variolink II was evaluated the highest among experimental groups and was significantly decreased after 1,000 thermocycling (p < 0.05). 2. The bond strength of Multilink was more affected by thermocycling than the other experimental groups and significantly decreased after 1,000 thermocycling (p < 0.05). 3. Panavia F 2.0 and Rely X Unicem showed the gradually decreased tendency of microtensile bond strength according to thermocycling but there was no significant difference (p > 0.05). 4. Adhesive based-resin cements showed lower bond strength with or without thermocycling than composite based-resin cements. 5. Variolink II & Multilink showed high bond strength and mixed failure, which was occurred with a thin layer of luting resin cement before thermocycling and gradually increased adhesive failure along the dentin surface after thermocycling. The bonding performance of resin cement can be affected by application procedure and chemical composition. Composite based-resin cement showed higher bond strength and durability than adhesive based-resin cement.

4종의 레진시멘트를 통한 상아질과 간접 레진 수복물 간의 인장결합강도를 열순환 시효처리 여부에 따라 측정하여 비교하고, 주사전자현미경 관찰을 통하여 각 레진시멘트의 접착 내구성을 평가하고자 시행하였다. 48개의 건전한 제3대구치의 상아질 표면을 평탄하게 노출시키고 #320 grit Sic Paper로 연마하였다. 복합레진 블록을 제작하여 #600 grit Sic Paper로 연마한 후에 접착면을 Sandblast로 처리하였다. 각각의 레진시멘트로 제조사 지침에 따라 적용하여 복합레진 블록을 상아질 표면에 접착하였다. 이후 제작된 시편을 열순환시키지 않거나, 1,000회, 5,000회 열순환 시킨 후 ($5^{\circ}C\;-\;55^{\circ}C$) 미세인장결합강도를 측정하였다. 열순환 전 시편의 접착계면 (수직절단면)과 파절된 시편의 상아질 파단면을 전자현미경 관찰하여 다음과 같은 결론을 얻었다. 1. Variolink II의 결합강도는 다른 실험군보다 높은 결합강도를 보여주었으며, 1,000회 열순환 후 유의성 있게 결합강도가 감소되었다 (p < 0.05). 3. Multilink의 결합강도는 열순환에 가장 많은 영향을 받았으며 1,000회 열순환 이후 유의성 있게 감소되었다 (p < 0.05). 3. Panavia F 2.0과 Rely X Unicem의 결합강도는 열순환에 의하여 감소되지 않았다 (p > 0.05). 4. 접착형 레진시멘트는 복합레진형 레진시멘트에 비해서 열처리 전후 모두 낮은 결합강도를 보여주었다. 5. 결합강도가 높은 Vaviolink II와 Multilink에서는 혼합형 파괴양상을 보였고, 결합강도가 낮은 Panavia F 2.0에서는 접착성 파괴 양상을 나타내었다. 이상의 연구 결과를 토대로 적절한 전처리와 접착제를 도포한다면 복합레진형 레진시멘트는 접착형 레진시멘트보다 결합강도와 그 내구성이 우수하다고 할 수 있을 것이다. 접착성 간접 수복물의 초기 결합강도와 내구성은 레진시멘트의 접착과정과 종류, 형태에 의해 영향을 받기 때문에 이들의 적절한 선택과 올바른 사용이 성공적인 수복을 위해 중요하다.

Keywords

References

  1. Manhart J, Scheibenhogen Fuchsbrunner A, Chen HY, Hiekel R. A 2-year clinical study of composite and ceramic inlays. Olin Oral Invest 4: 192-8, 2000 https://doi.org/10.1007/s007840000086
  2. Peumans M, Van Meerbeek B, Lambrechts P, Vanherle G. Porcelain Veneers: a review of the literature. J Dent 28:163-77, 2000 https://doi.org/10.1016/S0300-5712(99)00066-4
  3. Mitchell CA, Abbariki M, Orr JF. The influence of luting cement on the probabilities of survival and modes of failure of cast full-coveraged crowns. Dent Mater 16:198-206, 2000 https://doi.org/10.1016/S0109-5641(00)00009-9
  4. Knox J, Kralj B, Hubsch PF, Middleton J, Jones ML. An evaluation of the influence of orthodontic adhesive on the stresses generated in a bonded bracket finite element model. Am J Ortho Dent Orthop 119:43-53, 2001 https://doi.org/10.1067/mod.2001.110987
  5. el-Mowafy O, Rubo MH. Retention of a posterior resinbonded fixed partial denture with a modified design : an in vitro study. Int J Prosthod 13:425-31. 2000
  6. Carvalho RM, Pegoraro TA, Tay FR. Pegoraro LF, Pashley DH. Adhesive permeability affects coupling of resin cements that utiliseself-etching primers to dentine. J Dent 32:55-65, 2004 https://doi.org/10.1016/j.jdent.2003.08.003
  7. Kramer N, Lohbauer D, Frankenberger R. Adhesive luting of indirect restorations. Am J Dent 13:60D-76D, 2000
  8. Hasegawa EA, Boyer DB, Chan DC. Hardening of dual-cured cements under composite resin inlays. J Prosthet Dent 66:187-92, 1991 https://doi.org/10.1016/S0022-3913(05)80046-0
  9. el-Badrawy WA, el-Mowafy OM. Chemical versus dual curing of resin inlay cements, J Prosththet Dent 73:515-24, 1995 https://doi.org/10.1016/S0022-3913(05)80109-X
  10. Primenta LAF, Amaral CM, Bredrane de Castro AKB, Ritter AV. Stability of dentin bond strengths using different bonding techniques after Total-etch, deproteinization and self-etching. Oper Dent 29:592-598
  11. Paul SJ, Welter DA, Ghazi M, Pashley D. Nanoleakage at the dentin adhesivevs. microtensile bond strength. Oper Dent 24:181-188, 1999
  12. Giannini M, Seixas CAM, Reis AF, Pimenta LAF. Six-month storage-time evaluation of one-bottle adhesive systems to dentin. J Esth Rest Dent 15:43-49, 2003 https://doi.org/10.1111/j.1708-8240.2003.tb00281.x
  13. Tay FR. Pashley DH, Yoshiyama M. Two mondes of nanoleakage expression in single-step adhesives. J Dent Res 81 :472-476, 2002 https://doi.org/10.1177/154405910208100708
  14. Sano H. Yoshikawa T, Pereira PNR, Kanemura N, Morigami M, Tagami J, Pashley D. Long-term Durability of dentine bonds made with a self-etching primer. J Dent Res 78:906-911, 1999 https://doi.org/10.1177/00220345990780041101
  15. Kato G, Nakabayashi N. The durability of adhesion to phosphoric acid etched, wet dentine substrates. Dent Mater 14:347-352, 1998 https://doi.org/10.1016/S0109-5641(99)00003-2
  16. Hakimeh S, Vaidyanathan J, Houpt ML, Vaidyanathan TK, Hagen SV. Microleakage of compomer class V restorations: effect of load cycling, thermal cycling, and cavity shape differences. J Prosthet Dent 83: 194-203, 2000 https://doi.org/10.1016/S0022-3913(00)80012-8
  17. Wendt SL, Mcinnes PM, Dickinson GL. The effect of thermocycling in microleakage analysis. Dent Mater 8: 181-184, 1992 https://doi.org/10.1016/0109-5641(92)90079-R
  18. Miyazaki M, Sato M, Onose H. Moore BK. Influence of thermal cycling on dentin bond strength of two-step bonding systems. Am J Dent 11: 118- 122, 1998
  19. Hashimoto M, Ohno H. Kaga M, Endo K, Sano H. Oguchi H. In vivo degradation of resin-dentin bonds in humans over 1 to 3 years. J Dent Res 79:1385-1391. 2000 https://doi.org/10.1177/00220345000790060601
  20. Krejci I, Lutz F. Mixed class V restorations: the potentials of dentine bonding. J Dent 18:263-270, 1990 https://doi.org/10.1016/0300-5712(90)90026-B
  21. Suh BI, Feng L, Pashley DH. Tay FR. Factors contributing to the incompatibility between simplified-step adhesives and chemically-cured or dual-cured composites. Part III. Effect of acidic resin monomers. J Adhes Dent 5:267-282, 2003
  22. Attal JP, Asmussen E, Degrange M. Effects of surface treatment on the free surface energy of dentin. Dent Mater 10:259-264, 1994 https://doi.org/10.1016/0109-5641(94)90071-X
  23. Tay FR. Pashley DH. Aggressiveness of contemporary self-etching systems. I: Depth of penetration beyond dentin smear layers. Dent Mater 17:296-308, 2001 https://doi.org/10.1016/S0109-5641(00)00087-7
  24. Frankenberger R, Strobel WO, Lohbauer U, Kramer N, Petschelt A. The effect of six years of water storage on resin composite bonding to human dentin. J Biomed Mater Res Part B: Appl Biomater 69:25-32, 2004
  25. Armstrong SR, Vargas MA, Fang Q, Laffoon JE. Microtensile bond strength of a total-etch 3-step, total-etch 2-step, self-etch 2-step, and a self-etch 1-step dentin bonding system through 15-month water storage. J Adhes Dent 5:47-56, 2003
  26. Tay FR. Pashley DH. Dental adhesives of the future. J Adhes Dent 4:91-103, 2002
  27. Brackett MG, Dib A. Brackett WW, Estrada BE, Reyes AA. One-year clinical performance of a resin-modified glass ionomer and a resin composite restorative material in unprepared Class V restorations. Oper Dent 27: 112-6, 2002
  28. Turkun SL. Clinical evaluation of a self-etching and a one-bottle adhesive system at two years. J Dent 31: 527-534, 2003 https://doi.org/10.1016/S0300-5712(03)00107-6
  29. Takahashi A, Inoue S, Kawamoto C, Ominato R, Tanaka T, Sato Y, Pereira PNR. Sano H. In vivo long-term durability of the bond to dentin using two adhesive systems. J Adhes Dent 4:151-159, 2002
  30. Miyazaki M, Sato M, Onose H. Moore BK. Influence of thermal cycling on dentin bond strength of two-step bonding systems. Am J Dent 11: 118-122, 1998
  31. Nikaido T, Kunzelman KH. Chen H, Ogata M, Harada N, Yamaguchi S, Cox CF, Hickel R, Tagami J. Evaluation of thermal cycling and mechanical loading on bond strength of a self-etching primer system to dentin. Dent Mater 18:269-275, 2002 https://doi.org/10.1016/S0109-5641(01)00048-3
  32. Jan DM, Marcos V, Kirsten VL, Kazuhiro H. Paul L, Bart VM. Bonding of an auto-adhesive luting material to enamel and dentin. Dent Mater 20:963-971. 2004 https://doi.org/10.1016/j.dental.2004.03.002
  33. Bin Y, Klaus L, Rainer A. Matthias K. Microtensile bond strength of three luting resins to human regional dentin. Dent Mater 22:45-46, 2006 https://doi.org/10.1016/j.dental.2005.02.009
  34. 김도완, 최경규, 박상진. 자가부식형 상아질접착제와 레진시멘트와의 적합성에 관한 연구. 대한치과보존학회지 30:493-504, 2005

Cited by

  1. Effect of the additional etching procedure on push-out bond strength of one-step resin cement vol.33, pp.5, 2008, https://doi.org/10.5395/JKACD.2008.33.5.443
  2. Physical properties of different self-adhesive resin cements and their shear bond strength on lithium disilicate ceramic and dentin vol.34, pp.3, 2009, https://doi.org/10.5395/JKACD.2009.34.3.184
  3. Effect of a desensitizer on dentinal bond strength in cementation of composite resin inlay vol.34, pp.3, 2009, https://doi.org/10.5395/JKACD.2009.34.3.223
  4. Effect of surface treatment of FRC-Post on bonding strength to resin cements vol.36, pp.2, 2011, https://doi.org/10.5395/JKACD.2011.36.2.125