Low-voltage high-linear bipolar OTA and its application to IF bandpass Filter

저전압 고선형 바이폴라 OTA와 이를 이용한 IF 대역통과 필터

  • Chung, Won-Sup (School of Electronics and Information Engineering Cheongju University) ;
  • Son, Sang-Hee (School of Electronics and Information Engineering Cheongju University)
  • 정원섭 (청주대학교, 전자정보공학부) ;
  • 손상희 (청주대학교, 전자정보공학부)
  • Published : 2007.07.25

Abstract

A low-voltage high-linear bipolar OTA and its application to IF bandpass filter for GSM cellular telephone are presented. The OTA consists of a low-voltage linear transconductor, a translinear current gain cell, and three current mirrors. The bandpass filter is composed of two cascaded identical second-order bandpass filters, which consist of a resistor, a capacitor, and a grounded simulated inductor realized with two OTA's and a grounded capacitor. SPICE simulations using an 8 GHz bipolar transistor-array parameter show that the OTA with a transconductance of 1 mS exhibits a linearity error of less than ${\pm}2%$ over an input voltage range of ${\pm}0.65\;V$ at supply voltages of ${\pm}2.0\;V$. Temperature coefficient of the transconductance is less than $-90ppm/^{\circ}C$. The bandpass filter has a center frequency of 85 MHz and Q-factor of 80. Temperature coefficient of the center frequency is less than $-182ppm/^{\circ}C$. The power dissipation of the filter is 128 mW.

GSM 셀룰러폰을 위한 저전압 고선형 바이폴라 OTA와 이룡 이용한 IF bandpass filter(BPF)를 제안하였다. OTA는 저전압 선형 transconductor, translinear 전류이득 셀, 그리고 3개의 전류 미러로 구성 되어있다. BPF는 2개의 동일한 2차 BPF를 직렬 연결한 형태인데, 2차 BPF는 저항과 커패시터 그리고 2개의 OTA와 커패시터로 된 ground simulated inductor로 구성되어 있다. 8GHz bipolar transistor-array를 사용한 SPICE 시뮬레이션에서는 1mS의 transconductance의 OTA가 ${\pm}2%$ 이하의 선형 오차와 ${\pm}2\;V$에서 ${\pm}0.65\;V$이상의 선형범위를 가짐을 보여준다. transconductor의 온도계수는 $-90ppm/^{\circ}C$이하이다. BPF는 중심 주파수는 $85MHz\;Q$값은 80이 되도록 설계하였다. 중심주파수에서의 온도계수는 $-182ppm/^{\circ}C$이고, BPF의 소비전력은 128mW 이다.

Keywords

References

  1. 'Application Specific Analog Products', Databook (CA: National Semiconductor Corporation, Santa Clara, 1995
  2. Khan, I. A., and Ahmed, M. T., 'Wide-range electronically tunable multifunction OTA-C filter for instrumentation applications', IEEE Trans. Instrum. Meas., 36, 13-17, 1987
  3. Chung, W.-S., and Watanabe, K., 'A temperature difference-to-frequency converter using resistance temperature detectors', IEEE Trans. Instrum. Meas., 39, 676-677, 1990 https://doi.org/10.1109/19.57259
  4. Chung, W.-S., Kim, K.-H., and Cha, H.-W., 'A linear operational transconductance amplifier for instrumentation applications', IEEE Trans. Instrum. Meas., 41, 441-443, 1992 https://doi.org/10.1109/19.153345
  5. Gilbert, G., 'A new wideband amplifier techinque', IEEE J. Solid-State Circuits, 3, 353-365, 1968 https://doi.org/10.1109/JSSC.1968.1049924
  6. 'QuickChipTM 6 Integrated Circuit Design Guide (Tektronix, Inc., Beaverton, Version 1)', 1989
  7. Wyszynski, A., Schaumann, R., Szczepanski, S., and Halen, P. V., 'Design of 2.7GHz linear OTA and a 250-MHz elliptic filter in bipolar transistor-array technology', IEEE Trans. Circuits & Systems II, 40, 19-31, 1993 https://doi.org/10.1109/82.215357
  8. Fabre, A., Saaid, O., and Boucheron, C., 'Low power current-mode second-order bandpass IF filter', IEEE Trans. Circuits & Systems II, 44, 436-446, 1997 https://doi.org/10.1109/82.592570