Kinematics and Robust PID Trajectory Tracking Control of Parallel Motion Simulator

병렬형 모션 시뮬레이터의 기구학적 해석과 강인 궤적추종 PID 제어기의 설계

  • Published : 2007.09.30

Abstract

This article suggests an inverse kinematics analysis of a two degree of freedom spatial parallel motion simulator and design methodology of the robust PID controller. The parallel motion simulator consists of a fixed base and a moving frame connected by two serial chains, with each serial chain containing one revolute joint and two passive spherical joint. First, an inverse kinematics problems are solved in order to find the joint variable necessary to bring the end effector to track the desired trajectory. Second, an inverse optimal PID controller is proposed to track trajectories in the face of uncertainty. And the $H_{\infty}$ optimality and robust stability of the closed-loop system is acquired through the PID controller. Finally numerical results show the effectiveness of the PID controller that is designed by square/linear tuning laws.

Keywords

References

  1. V. E. Gough and S. G. Whitehall, 'Universal tyre test machine', Proc. Inst. Mech. Eng, Vol. 180, London, England, pp. 671-386, 1965
  2. D. Stewart, 'A platform with six degrees of freedom', Proc. Inst. Mech. Eng., Vol. 180, London, England, pp. 1671-1675, 1965
  3. K. J. Astrom and Hagglund, PID Controllers : Theory, Design and Tuning, Research Triangle Park, NC : Instrum. Soc. Amer., 1995
  4. K. J. Äström, Hägglund, C. C. Hang and W. K. Ho, 'Automatic tuning and adaptation for PID controllers-A Survey', IEEE Trans.Contr. Eng. Pract., Vol. 1, No. 4, pp. 699-714, 1993 https://doi.org/10.1016/0967-0661(93)91394-C
  5. A. Isidori and A. Astolfi, 'Disturbance attenuation and $H_{\infty}$ -control via measurement feedback in nonlinear systems', IEEE Trans. Automat. Contr., Vol. 37, pp. 1283-1293, 1992 https://doi.org/10.1109/9.159566
  6. A. J. Vander Schaft, '$L_{2}$-gain analysis of nonlinear systems and nolinear state feedback $H_{\infty}$ control', IEEE Trans. Automat. Contr., Vol. 37, pp. 770-784, June, 1992 https://doi.org/10.1109/9.256331
  7. Y. Choi, W. K. Chung, I. H. Suh, 'Performance and $H_{\infty}$ optimality of PID trajectory tracking controller for Lagrangian systems', IEEE Trans. Robot. Automat., Vol. 17, No. 6, pp. 857-868, 2001 https://doi.org/10.1109/70.976011
  8. Y. Choi and W. K. Chung, 'Performance limitation and autotuning of inverse optimal PID controller for lagrangian systems', Trans. ASME J. Dyn. Syst. Meas. Contr., Vol. 22, pp. 803-812, 2000
  9. J. Park and W. K. Chung, 'Design of a robust $H_{\infty}$ PID control for industrial manipulators', Trans. ASME J. Dyn. Syst. Meas. Contr., Vol. 22, pp. 803-812, 2000
  10. L. W. Tsai, Robot Analysis : The Mechanics of Serial and Parallel Manipulators, Wiley-Interscience, 1999
  11. M. Krstic and Z. H. Li, 'Inverse optimal design of input-to-state stabilizing nonlinear controllers', IEEE Trans. Automat. Contr., Vol. 43, pp. 336-350, Mar. 1998 https://doi.org/10.1109/9.661589
  12. E. D. Sontag and Y. Wang, 'On characterizations of the input-to-state stability property', Syst. Contr. Lett., Vol. 24, pp. 351-359, 1995 https://doi.org/10.1016/0167-6911(94)00050-6