Purification and Characterization of Xylanase from Fomitopsis palustris in Rice Straw Culture

볏짚분해과정 중에 생산하는 Fomitopsis palustris 균체 외 Xylanase의 분리정제 및 효소특성

  • Received : 2007.10.10
  • Accepted : 2007.10.24
  • Published : 2007.11.25

Abstract

An extracellular xylanase from the brown-rot fungus Fomitopsis palustris grown on rice straw culture was purified to a single protein band. On SDS-PAGE, the molecular mass of purified enzyme was estimated to be about 43 kDa. The amino acid sequence of the proteolytic fragments showed high homology with fungal glycoside hydrolase family 10 xylanases. The $K_m$, $K_{cat}$ and $V_{max}$ for birch xylan were $31mg/m{\ell}$, $2.3{\times}10^4/min$ and 252.3 U/mg, respectively. The optimal activity of the purified xylanase from F palustris was observed at pH 4.0~5.0 and $70^{\circ}C$.

본 논문에서는 갈색부후균 Fomitopsis palustris가 볏짚을 분해하는 과정 중에 생산하는 xylanase를 확인하여 분리 정제하고, 아미노산 서열분석을 통해 동정하였다. 그리고 동정된 단백질의 효소특성을 조사하였다. 분리 정제된 단백질은 SDS-PAGE분석에서 43kDa의 분자량을 나타내었고, 아미노산 서열분석에서는 Glycoside Hydrolase family 10에 속하는 xylanase와 높은 상동성을 나타내었다. 정제효소의 기질에 대한 $K_m$치는 $31 mg/m{\ell}$, $V_{max}$는 252.3 U/mg, $K_{cat}$$2.3{\times}10^4/min$이고, 최적 pH 범위는 pH 4.0~5.0 최대 활성 온도는 $70^{\circ}C$로 밝혀졌다.

Keywords

References

  1. 배성호, 최용진. 1991. Bacillus stearothermophilus가 생산하는 Xylanase의 정제 및 특성. Kor. J. Appl. Microbiol. Biotechnol. Vol. 19, 592-597
  2. Bhattacharjee, B., A. Roy, and A. L. Majumder. 1993. Carboxymethylccllulase from Lenzites saepiaria, a brown-rotter. Biochem. Mol. Biol. Int. 30: 1143-1152
  3. Bradford, M. M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72: 248-254 https://doi.org/10.1016/0003-2697(76)90527-3
  4. Claeyssens, M., H. Van Tilbeurgh, P. Tomme, T. M. Wood, and I. McCrae. 1989. Fungal cellulase systems. Comparison of the specificities of the cellobiohydrolases isolated from Penicillium pinopbilum and Trichoderma reesei. Biochem. J. 261:819- 826 https://doi.org/10.1042/bj2610819
  5. Eriksson, K.-E., R. A. Blanchette, and P. Ander. 1990. Microbial and enzymatic degradation of wood and wood components. Springer, Berlin Heidelberg, New York
  6. Eriksson, K. E. and B. Pettersson. 1975. Extracellular enzyme system utilized by the fungus Sporotricbum pulierulentum (Cbrysosporium lignorum) for the breakdown of cellulose 1. Separation, purification and physic-chemical characterization for five endo-1,4- $\beta$-glucanases. Eur. J. Biochem 51: 193-206 https://doi.org/10.1111/j.1432-1033.1975.tb03919.x
  7. Ghanen, N. B., H. H. Yusef, and H. K. Mahrouse. 2000. Production of Aspergillus terreus xylanase in solid-state cultures: application of the Plackett-Burman experimental design to evaluate nutritional requirements. Bioresour. Technol. 73: 113-121 https://doi.org/10.1016/S0960-8524(99)00155-8
  8. Herr, D., F. Baumer, and H. Dellweg. 1978. Purification and properties of an extracellular endo-1,4-$\beta$-glucanase from Lenzites trabea. Applied Microbiol. Biotechnol. 5: 29-36 https://doi.org/10.1007/BF00515684
  9. Iefuji, H., M. Chino, M. Kato, and Y. Iimura. 1996. Acid xylanase from ywast Cryptococcus sp. S-2: purification, characterization, cloning, and sequencing. Biosci. Biotechnol. Biochem. 60 1331-1338 https://doi.org/10.1271/bbb.60.1331
  10. Keilich, P., P.J. Bailey, E. G. Afting, and W. Liese. 1969. Cellulase from the wood-degrading fungus Polylorus scbueinitzii fr. Biochim. Biophys. Acta 185: 392-401 https://doi.org/10.1016/0005-2744(69)90432-X
  11. Kerem, Z., K. A. Jensen, and K. E. Hammel. 1999. Biodegradative mechanism of the brown rot basidiomycete Gleophyllum trabeum: evidence for an extracellular hydroquinone-driven fenton reaction. FEBS Lett. 446: 49-54 https://doi.org/10.1016/S0014-5793(99)00180-5
  12. Kimura, T., J. Ito, A. Kawano, T. Makino, H. Kondo, S. Karita, K. Sakka, and K. Ohmiya. 2000. Purification, characterization and molecular cloning of acidophilic xylanase from Penicillium sp. 40. Biosci. Biotechnol. Biochem. 64: 1230-1237 https://doi.org/10.1271/bbb.64.1230
  13. Lineweaver, H. and D. Burk. 1934. The determination of enzyme dissociation constants. J. Am. Chem. Soc. 56: 658-666 https://doi.org/10.1021/ja01318a036
  14. Polizeli, M. I. M., T. M., A. C. S. Rizzatti, R. Monti, H. F. Terenzi, J. A. Jorge, and D. S. Amorim. 2005. Xylanase from fungi: properties and industrial applications. Appl. Microbiol. Biotechnol. 67: 577--591 https://doi.org/10.1007/s00253-005-1904-7
  15. Somogyi, M. 1952. Notes on sugar determination. J. BioI. Chem. 195: 19-23
  16. Taneja, K., S. Gupta, and R. C. Kuhad, 2002 Properties and application of a partially purified alkaline xylanase from an alkalophilic fungus Aspergillus nidulans KK-99. Bioresour. Technol. 85(1): 39-42 https://doi.org/10.1016/S0960-8524(02)00064-0
  17. Yoon, J.-J., C.-J. Cha, Y.-S. Kim, D.-W. Son, and Y.-K. Kim. 2007. The brown-rot basidiomycete Fomitopsis palustris has the endo-glucanases capable of degrading microcrystalline cellulose. J. Microbioi Biotechnol. 17: 800-805
  18. Yoon, J.-J. and Y.-K. Kim. 2005. Degradation of crystalline cellulose by the brown-rot basidiomycete Fomitopsis palustris. J. Microbiol. 43: 487 -492
  19. Wong, K. K. Y., L. U. L. Tan, and J. N. Saddler. 1998. Multiplicity of $\beta$-1,4-xylanase in microorganisms, functions and applications. Microbiol. Rev. 52: 305-317