Stable Macro-aggregate in Wet Sieving and Soil Properties

습식체별에 안정한 대입단과 토양특성과의 관계

  • Han, Kyung-Hwa (National Institute of Agricultural Science and Technology) ;
  • Cho, Hyun-Jun (National Institute of Agricultural Science and Technology) ;
  • Lee, Hyub-Sung (National Institute of Agricultural Science and Technology) ;
  • Oh, Dong-Shig (National Institute of Agricultural Science and Technology) ;
  • Kim, Lee-Yul (National Institute of Agricultural Science and Technology)
  • 한경화 (농촌진흥청 농업과학기술원) ;
  • 조현준 (농촌진흥청 농업과학기술원) ;
  • 이협성 (농촌진흥청 농업과학기술원) ;
  • 오동식 (농촌진흥청 농업과학기술원) ;
  • 김이열 (농촌진흥청 농업과학기술원)
  • Received : 2007.04.26
  • Accepted : 2007.06.18
  • Published : 2007.08.28

Abstract

Soil aggregates, resulting from physico-chemical and biological interactions, are important to understand carbon dynamics and material transport in soils. The objective of this study is to investigate stable macro-aggregate (> 0.25mm diameter) in wet sieving (SM) and their relation to soil properties in 15 sites. The clay contents of soils were ranged from 1% to 33%, and their land uses included bare and cultivated lands of annual upland crops, orchard, and grass. Undisturbed 3 inch cores with five replicates were sampled at topsoil (i.e., 0- to 10-cm depth), for analyzing SM and physico-chemical properties, after in situ measurement of air permeability. SM of sandy soils, with clay content less than 2%, was observed as 0%. Except the sandy soils, SM of soils mainly depended on land uses, showing 27%~35% in soils with annual plants such as vegetable and corn, 51% in orchard, and 75% in grass. This sequence of SM is probably due to the different strength of soil disturbance like tillage with different land uses. SM had significant correlation with cation exchange capacity, organic matter content, sand, clay, silt, bulk density, and exchangeable potassium (K) and magnesium (Mg), whereas fluctuating properties with fertilization such as pH, EC, and water soluble phosphorus weren't significantly correlated to the SM. Particularly, exchangeable calcium (Ca) had significant relation with SM, only except soils with oversaturating Ca. This study, therefore, suggested that SM could perceive different land uses and the change of soil properties in soils, necessarily considering soil textures and Ca over-saturation.

토양입단은 물리화학, 생물학적 인자의 종합적 결과로 토양 중 탄소행동과 물질이동 해석에 중요하다. 본 연구에서는 습식체별에 안정한 대입단(>지름 0.25mm)과 토양특성과의 관계를 15개 토양을 대상으로 살펴보았다. 토양은 먼저 깊이 0-10cm에서 통기성을 현장측정한 후 3인치 코아 5반복으로 채취하여 습식체별에 안정한 대입단과 토양이화학성을 분석하였다. 대상토양의 점토함량은 1~33%범위였고 토지이용은 과수, 일년생 밭작물(채소, 옥수수), 초지를 비롯하여 도로변 나지 등이었다. 습식체별에 안정한 대입단은 점토함량 2%이하의 사토에서 함량이 0%로 낮고, 사토를 제외한 토양에서 일년생 작물을 재배하는 밭이 27~35%, 과수원 51%, 초지 75%의 순으로 나타났다. 이는 경운 등의 토양교란정도와 연관이 깊은 것으로 보인다. 습식체별에 안정한 대입단은 양이온치환용량, 유기물함량, 모래, 점토, 미사, 용적밀도, 그리고 교환성 K, Mg와 유의한 상관을 나타내었으나 pH, EC 및 수용성 인 등의 토양특성은 상관이 유의하지 않았다. 특히 교환성 칼슘의 경우, 칼슘 과포화 토양을 제외하였을 때 내수성입단함량과 유의한 상관을 보였다. 따라서, 본 연구는 습식체별에 안정한 대입단은 토지이용과 토양특성을 반영하나 칼슘 과포화도 및 토성간의 차이를 고려해서 파악해야 함을 제안한다 하겠다.

Keywords

References

  1. Bronick, C. J. and R. Lal. 2005. Soil structure and management: a review. Geoderma 124: 3-22 https://doi.org/10.1016/j.geoderma.2004.03.005
  2. Cater, M. R. 2002. Soil quality for sustainable land management: Organic matter and aggregation interactions that maintain soil functions. Agron. J. 94:38-47 https://doi.org/10.2134/agronj2002.0038
  3. Dalal, R. C., and B. J. Bridge. 1996. Aggregation and organic matter storage in sub-humid and semi-arid soils. In: Carter, M. R., and B. A. Stewart, Structure and Orgainc Matter Storage in Agricultural Soils. CRC Press, Boca Raton, FL, pp. 263-307
  4. Greenland, D. J. 1981. Soil management and soil degradation. J. Soil Sci. 32:301-148 https://doi.org/10.1111/j.1365-2389.1981.tb01708.x
  5. Hyun, B. K., S. J. Jung, K. C. Song, Y. K. Sonn, and W. K. Jung. 2007. Relationship between soil water-stable aggregate and physico-chemical soil properties. Korean J. Soil Sci. Fert. 40(1): 57-63
  6. Kay, B. D. 1989. Rates of change of soil structure different cropping system. Adv. Soil Sci. 12: 1-52
  7. Kemper, W. D., and E. J. Koch. 1966. Aggregate stability of soils form the westem portions of the United States and Canada. U. S. Dep. Agric. Tech. Bull. 1355
  8. Klute, A. 1986. Method of soil analysis. part 1. Physical and mineralogical methods, 2nd edn. ASA and SSSA, Madison, WI
  9. McLaren, R. G. and K. C. Cameron. 1996. Soil Science. 2nd edition. Oxford University Press
  10. NIAST. 2000. Method of soil and plant analysis. Published by National Institute of Agricultural Science & Technology. Suwon, Korea
  11. Pagliai, M., N. Vignozzi, S. Pellegrini. 2004. Soil structure and the effect of management practices. Soil & Tillage Research 79: 131-143 https://doi.org/10.1016/j.still.2004.07.002
  12. SAS Institute Inc. 2004. SAS Enterprid. SAS Institute Inc., Cary, NC, USA
  13. Six, J., H. Bossuyt, S. Degryze, and K. Denef. 2004. A history of research on the link between (micro )aggregates, soil biota, and soil organic matter dynamics. Soil & Tillage Research 79:7-31 https://doi.org/10.1016/j.still.2004.03.008
  14. Sparks, D. L. 1996. Method of soil analysis. part 3. Chemical methods, 3rd edn. ASA and SSSA, Madison, WI
  15. Tisdall, J. M. and J. M. Oades. 1982. Organic matter and waterstable aggregates. J. Soil Sci. 62:141-163
  16. USDA. 1999. Soil quality test kit guide. USDA-ARS, Washington, DC, USA
  17. Yoder, R. E. 1936. A direct method of aggregate analysis of soils and a study of the physical nature of erosion losses. J. Am. Soc. Agron. 28: 337-351 https://doi.org/10.2134/agronj1936.00021962002800050001x