Hot-Carrier-Induced Degradation of Lateral DMOS Transistors under DC and AC Stress

DC 및 AC 스트레스에서 Lateral DMOS 트랜지스터의 소자열화

  • Published : 2007.02.25

Abstract

This paper presents the experimental findings on the different degradation mechanism which depends on the gate oxide thickness in lateral DMOS transistors. For thin oxide devices, the generation of interface states in the channel region and the trapped holes in the drift region is found to be the causes of the device degradation. For thick devices, the generation of interface states in the channel region is found to be the causes of the device degradation. We confirmed the different degradation mechanism using device simulation. From the comparison of device degradation under DC and AC stress, it is found that the device degradation is more significant under DC stress than one under AC stress. The device degradation under AC stress is more significant in high frequency. Therefore the hot carrier induced degradation should be more carefully considered in the design of RF LDMOS transistors and circuit design.

본 연구에서는 Lateral DMOS 소자열화 메카니즘이 게이트 산화층의 두께에 따라 다른 것을 측정을 통하여 알 수 있었다. 얇은 산화층 소자는 채널에 생성되는 계면상태와 drift 영역에 포획되는 홀에 의하여 소자가 열화 되고 두꺼운 산화층 소자에서는 채널 영역의 계면상태 생성에 의해서 소자가 열화 되는 것으로 알 수 있었다. 그리고 소자 시뮬레이션을 통하여 다른 열화 메카니즘을 입증할 수 있었다. DC 스트레스에서의 소자 열화와 AC 스트레스에서 소자열화의 비교로부터 AC스트레스에서 소자열화가 적게 되었으며 게이트 펄스의 주파수가 증가할수록 소자열화가 심함을 알 수 있었다. 그 결과로부터 RF LDMOS 에서는 소자열화가 소자설계 및 회로설계에 중요한 변수로 작용할 수 있음을 알 수 있었다.

Keywords

References

  1. M. Knaipp, J.M. Park, V. Vescoli, 'Evolution of a CMOS Based Lateral High Voltage Technology Concept,' Microelectronics Journal, vol. 37, pp. 243-248, 2006 https://doi.org/10.1016/j.mejo.2005.09.014
  2. O'Donovan V., Whiston S., Deignan A., N. Chleirigh C. Hot Carrier Reliability of Lateral DMOS Transistors, in Proc. of IRPS 2000 174-179 https://doi.org/10.1109/RELPHY.2000.843910
  3. Philip L. Hower, 'Safe Operaing Area-a New Frontier in Ldmos Design,' Proc. of Interanational Symposium on Power Semiconductor Device &IC's, pp. 1-8, 2002 https://doi.org/10.1109/ISPSD.2002.1016159
  4. Aresu S., D. Ceuninck W., Van den bosch G., Groeseneken G., Moens P., Manca J., Wojciechowski D., Gassot P. Evidence for source injection hot carrier effects on lateral DMOS, Microelectronics Reliability 2004; 44: 1621-1624 https://doi.org/10.1016/j.microrel.2004.07.080
  5. S. Manzini and C. Contiero, 'Hot-Electron-Induced Degradation in High-Voltage Submicron DMOS Transistors,' IEEE IEDM Tech. Dig., pp.65-68, 1996 https://doi.org/10.1109/ISPSD.1996.509450
  6. Versari R., Pieracci A. Experimental Study of Hot-Carrier Effects in LDMOS Transistors, IEEE Trans. Electron Devices, vol.46, no.6, pp.1228-1233, 1999 https://doi.org/10.1109/16.766890
  7. Manzini S.Gallerano A. Avalanche injection of hot holes in the gate oxide of LDMOS Transistors, Solid-State Electronics, vol.44, pp.1325-1330, 2000 https://doi.org/10.1016/S0038-1101(99)00317-2
  8. Moens P., Van den bosch G., Groeseneken G. Hot-Carrier Degradation Phenomena in Lateral and Vertical DMOS Transistors, IEEE Trans. Electron Devices, vol.51, no.4, pp.623-628, 2004 https://doi.org/10.1109/TED.2004.824688
  9. Moens P., Van den bosch G., De Keukeleire C., Degraeve R., Tack M., Groeseneken G. Hot Hole Degradation Effects in Lateral nDMOS Transistors, IEEE Trans. Electron Devices, vol.51, no.10, pp.1704-1710, 2004 https://doi.org/10.1109/TED.2004.834913
  10. ATLAS: http://www.silvaco.com
  11. E. Takeda. R. Izawa, K. Umeda, and R. Nagai, 'AC hot-carrier effects in scaled MOS devices,' IEEE Int. Reliability Physics Symp. Proc., pp.118-122,1991 https://doi.org/10.1109/RELPHY.1991.145999
  12. K. Mistry ,and B. Doyle, ' The role of electron trap creation in enhanced hot-carrier degradation during AC stress,' IEEE Electron Device Lett., vol. 11, no. 6, pp. 267-269, 1990 https://doi.org/10.1109/55.55276
  13. K. N. Quader, P. K. Ko, and C. Hu, 'Projecting CMOS circuit hot-carrier reliability from DC device lifetime,' IEEE IEDM Tech. Dig., pp. 511-513, 1999