Aluminum-induced Root Growth Inhibition and Impaired Plasma Membrane $H^+-flux$ in Mung Bean

알루미늄에 의한 녹두 뿌리의 생장 억제와 원형질막 $H^+-flux$의 손상

  • Ahn, Sung-Ju (Institute of Agricultural Science and Technology, Department of Plant Biotechnology, Chonnam National University) ;
  • Kim, Yu-Sun (Institute of Agricultural Science and Technology, Department of Plant Biotechnology, Chonnam National University) ;
  • Park, Won (Institute of Agricultural Science and Technology, Department of Plant Biotechnology, Chonnam National University) ;
  • Ku, Yang-Gyu (Institute of Agricultural Science and Technology, Department of Plant Biotechnology, Chonnam National University) ;
  • Min, Kyung-Soo (Institute of Agricultural Science and Technology, Department of Plant Biotechnology, Chonnam National University) ;
  • Whang, Tei-Ik (Institute of Agricultural Science and Technology, Department of Plant Biotechnology, Chonnam National University)
  • 안성주 (전남대학교 농업생명과학대학 식물생명공학부 농업과학기술연구소) ;
  • 김유선 (전남대학교 농업생명과학대학 식물생명공학부 농업과학기술연구소) ;
  • 박원 (전남대학교 농업생명과학대학 식물생명공학부 농업과학기술연구소) ;
  • 구양규 (전남대학교 농업생명과학대학 식물생명공학부 농업과학기술연구소) ;
  • 민경수 (전남대학교 농업생명과학대학 식물생명공학부 농업과학기술연구소) ;
  • 황태익 (전남대학교 농업생명과학대학 식물생명공학부 농업과학기술연구소)
  • Published : 2007.06.30

Abstract

It has been well established that aluminum (Al) inhibits root tip growth rapidly in acid soil. We report the correlation between Al induced growth inhibition and impaired $H^+-flux$ in mung bean (Vigna radiate L. cv. Kumsung). The root growth inhibition was dependent on Al concentration (0, 10, 25, 50, $100{\mu}M$) and exposure time (12 and 24 h). Using Hematoxylin staining, it was observed that the root damage was occurred preferentially in regions with high Al accumulation. Using the pH indicator, it was shown that the surface pH of root tip was strongly alkalized in the control whereas changed only slightly in the $50{\mu}M$ Al-treated root. The $H^+-ATPase$ activity of plasma membrane vesicles was inhibited by 56% in the Al-treated roots compared to control root. Decrease in the amount of the plasma membrane $H^+-ATPase$ (100 kDa) translation in the plant roots under Al stress was demonstrated by Western blot analysis. These results indicate that the dynamics of $H^+-flux$ across the root tip play an important role in root growth under Al stress.

본 연구는 알루미늄 스트레스가 녹두에 미치는 영향을 보기 위해 뿌리의 생장, 알루미늄 함량, 뿌리 표면의 pH 변화, 원형질막의 $H^+-ATPase$ 활성과 단백질 양의 변화를 조사하여 분석하였다. 1. 처리된 알루미늄의 농도는 10, 25, 50, $100{\mu}M$이었으며, 알루미늄에 의한 뿌리생장의 억제는 $25{\mu}M$ 이상의 농도 처리구에서 12시간부터 현저히 나타났고, 50과 $100{\mu}M$ 처리구에서는 뿌리의 생장이 거의 중단되었다. 2. 0.2% Hematoxlin으로 염색 시 알루미늄이 처리된 근단부에서 주로 염색되었으며, $50{\mu}M$ 농도로 처리된 뿌리의 경우 12시간째보다는 24시간째에 근단부 전체가 염색되어 그 피해가 심각함을 보여 주었다. 또 근단 부위가 대조구와 비교하여 어두운 갈색을 나타내고, 표면이 가로 쪽으로 갈라졌다. 3. 처리 농도별 근단부(1 cm)와 근단부를 제외한 부위의 뿌리로 나누어 24시간 처리를 한 후 알루미늄 함량을 측정한 결과, $10{\mu}M$ 처리구에서는 차이가 없었다. 그러나 알루미늄 처리 농도가 높을수록 즉, $25{\mu}M$ 이상 알루미늄 처리구에서는 근단부에서 2.5배 이상 높았다. 4. pH 지시약과 agarose plate technique를 이용하여 뿌리표면의 $H^+-flux$의 차이를 본 결과 녹두의 근단부 표면의 알카리화가 대조구에서는 12시간 정도부터 노란색(pH 4.5)에서 보라색(pH 6.0 이상)으로 변하는 것을 관찰하였으나 알루미늄 처리구에서는 색깔의 변화를 볼 수 없었다. 5. 24시간 동안 $50{\mu}M$ 알루미늄을 처리한 뿌리 원형질막 $H^+-ATPase$ 활성은 대조구에 비해 56%가 억제 되었다. $H^+-ATPase$ 단백질의 발현을 조사한 Western blotting 결과는 효소 활성의 감소와 유사하게 알루미늄이 처리된 뿌리에서 현저하게 줄어들었음을 확인할 수 있었다.

Keywords

References

  1. Ahn, S. J., M. Sivaguru, G. C. Chung, Z. Reigel, and H. Matsumoto. 2002. Aluminum-induced growth inhibition is associated with impaired efflux and influx of $H^{+}$ across the plasma membrane in root apices of squash (Cucurbita pepo). J. Exp. Bot. 53 : 1959-1966 https://doi.org/10.1093/jxb/erf049
  2. Ahn, S. J., M. Sivaguru, H. Osawa, G. C. Chung, and H. Matsumoto. 2001. Aluminum inhibits the $H^{+}$-ATPase activity by permanently altering the plasma membrane surface potentials in squash roots. Plant Physiol. 126 : 1381-1390 https://doi.org/10.1104/pp.126.4.1381
  3. Ahn, S. J., Z. Rengel, and H. Matsumoto. 2004. Aluminum-induced plasma membrane surface potential and $H^{+}$-ATPase activity in near-isogenic wheat lines differing in tolerance to aluminum. New Phytol. 162 : 71-79 https://doi.org/10.1111/j.1469-8137.2004.01009.x
  4. Baligar, V. C., W. V. Beaner, and J. L. Ahlrichs 1998. Nature and distribution of acid soils in the world. In Schabtent, R. E. (ed.) Proceeding of the workshop to develop a strategy for collaborative research and dissemination of techology in sustainable crop production in acid savavas and other problem soils of the world. Purdue University, pp. 1-11
  5. Bradford, M. M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72 : 248-254 https://doi.org/10.1016/0003-2697(76)90527-3
  6. Delhaize, E., P. R. Ryan, and P. J. Randall. 1993. Aluminum tolerance in wheat (Triticum aestivum L.). II. Aluminum-stimulated excretion of malic acid from root apices. Plant Physiol. 103 : 695-702 https://doi.org/10.1104/pp.103.3.695
  7. Gamborg, O. L. and L. R. Wetter. 1975. Plant Tissue Culture Methods. Saskatoon: Natl. Res. Council of Canada
  8. Illes, P., M. Schlicht, J. Pavlovkin, I. Lichtscheidl, F. Baluska, and M. Ovecka. 2006. Aluminium toxicity in plants: internalization of aluminium into cells of the transition zone in Arabidopsis root apices related to changes in plasma membrane potential, endosomal behaviour, and nitric oxide production. J. Exp. Bot. 57 : 4201-4213 https://doi.org/10.1093/jxb/erl197
  9. Kerven, G. L., D. G. Edwards, C. J. Asher, P. S. Hallman, and S. Kokot. 1989. Aluminium determination in soil solution. II. Short-term colorimetric procedures for the measurement of inorganic monomeric aluminium in the presence of organic acid ligands. Aust. J. Soil Res. 27 : 91-102 https://doi.org/10.1071/SR9890091
  10. Kochian, L. V. 1995. Cellular mechanisms of aluminum toxicity and resistance in plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 46 : 237-260 https://doi.org/10.1146/annurev.pp.46.060195.001321
  11. Ma, J. F., S. Hiradate, K. Nomoto, T. Iwashita, and H. Matsumoto. 1997a. Internal detoxyfication mechanism of Al in hydrangea. Identification of Al form in the leaves. Plant Physiol. 113 : 1033-1039 https://doi.org/10.1104/pp.113.4.1033
  12. Ma, J. F., S. J. Zheng, H. Matsumoto, and S. Hiradate. 1997b. Detoxifying aluminum with buckwheat. Nature. 390 : 569-570
  13. Matsumoto, H. 2000. Cell biology of Al tolerance and toxicity in higher plants. Int Rev. Cytol. 200 : 1-46 https://doi.org/10.1016/S0074-7696(00)00001-2
  14. Miyasaka, S. C., L. V. Kochian, J. E. Shaff, and C. D. Foy. 1989. Mechanism of aluminum tolerance in wheat: an investigation of genotypic differences in rhizosphere pH, $K^{+}$, and $H^{+}$ transport, and root-cell membrane potentials. Plant Physiol. 91 : 1188-1196 https://doi.org/10.1104/pp.91.3.1188
  15. Nagata, T., M. Hayatsu, and N. Kosuge. 1992. Identification of aluminium forms in tea leaves by 27Al NMR. Phytochemistry. 31 : 1215-1218 https://doi.org/10.1016/0031-9422(92)80263-E
  16. Palmgren, M. G., P. Askerlund, K. Fredrikson, S. Widell, M. Sommarin, and C. Larsson. 1990. Sealed inside-out and right-side-out plasma membrane vesicles: optimal conditions for formation and separation. Plant Physiol. 92 : 871-880 https://doi.org/10.1104/pp.92.4.871
  17. Rengel, Z. 1996. Tansley review No. 89: Uptake of aluminium by plant cells. New Phytol. 134 : 389-406 https://doi.org/10.1111/j.1469-8137.1996.tb04356.x
  18. Rhee, J. H., S. H. Lee, A. P. Singh, G. C. Chung, and S. J. Ahn. 2007. Detoxification of hydrogen peroxide in the root system maintains the activity of water transport and plasma membrane $H^{+}$-ATPase in figleaf gourd (Cucurbita ficifolia) exposed to low temperature. Physiol. Planta. 130 : 177-184 https://doi.org/10.1111/j.1399-3054.2007.00895.x
  19. Sanchez, P. A. and J. R. Benites. 1987. Low-input cropping for acid soils of the humid tropics: a transition technology between shifting and continuous cultivation. In Latham, M. and P. Ahn (eds). Africaland : Land Development and Management of Acid Soils in Africa. BSRAM Proceedings No.7. Bangkok, Thailand, pp. 85-106
  20. Shen, R. and J. F. Ma. 2001. Distribution and mobility of aluminium in an Al-accumulating plant, Fagopyrum esculentum Moench. J. Exp. Bot. 52 : 1683-1687 https://doi.org/10.1093/jexbot/52.361.1683
  21. Sivaguru, M. and W. J. Horst. 1998. The distal part of the transition zones is the most aluminum-sensitive apical root zone of maize. Plant Physiol. 116 : 155-163 https://doi.org/10.1104/pp.116.1.155
  22. Sussman, M. R. 1994. Molecular analysis of proteins in the plant plasma membrane. Annu. Rev. Plant Physiol. Plant Mol. Biol. 45 : 211-234 https://doi.org/10.1146/annurev.pp.45.060194.001235