DOI QR코드

DOI QR Code

Characterization of Nickel Composite Plating with TiO2 Particles for Photolysis of Organic Compound

유기물 광분해용 니켈-TiO2 복합도금 전극 특성에 관한 연구

  • Choi, Chul-Young (Pusan National University, School of Materials Science and Engineering) ;
  • Cho, Seung-Chan (Pusan National University, School of Materials Science and Engineering) ;
  • Ryu, Young-Bok (Pusan R&D Center, Korea Institude of Industrial Technology) ;
  • Kim, Young-Seok (Pusan R&D Center, Korea Institude of Industrial Technology) ;
  • Kim, Hyoung-Chan (Pusan R&D Center, Korea Institude of Industrial Technology) ;
  • Kim, Yang-Do (Pusan R&D Center, Korea Institude of Industrial Technology)
  • 최철영 (부산대학교 재료공학부) ;
  • 조승찬 (부산대학교 재료공학부) ;
  • 류영복 (한국생산기술연구원 부산연구센터) ;
  • 김영석 (한국생산기술연구원 부산연구센터) ;
  • 김형찬 (한국생산기술연구원 부산연구센터) ;
  • 김양도 (부산대학교 재료공학부)
  • Published : 2007.06.30

Abstract

Many fundamental studies have been carried out regarding waste water and hazardous gas treatment technology using the photolysis effect of $TiO_2$. However, photolysis of both organic and organic-inorganic binders immobilizing $TiO_2$ makes permanent use impossible. In this study we manufactured a catalytic electrode by nickel-$TiO_2$ composite plating in order to immobilize $TiO_2$. The surface properties according to the current density changes of cathode and concentration changes of $TiO_2$ powder in nickel plating bath has been analysed with EDX, XRF, SEM, Raman spectrometer etc. The characterization of the catalytic electrode in decomposition of organic compound has been obtained by using UV-Visible spectrophotometer through analysing concentration changes of methyl orange solution containing the catalytic electrode vs. time with projecting UV-light in the solution. The study shows that a catalytic electrode of nickel-$TiO_2$ composite plating with high-efficiency in decompostion of organic compound has been formed under high concentration of $TiO_2$ powder and low current density of cathode.

Keywords

References

  1. K. Wolf, A. Yazdani, P. Yates, J. Air Waste Manage. Assoc., 41 (1991) 1055 https://doi.org/10.1080/10473289.1991.10466899
  2. J. J. Shah, H. B. Singh, Environ. Sci. Technol., 22 (1988) 1381 https://doi.org/10.1021/es00177a001
  3. C. F. Wilkinson, Environ. Sci. Technol., 21 (1987) 843 https://doi.org/10.1021/es00163a606
  4. K. D. Liu, Enaluation of VOC Managemen and Control, Industrial Pollution Prevention Control, 15 (1993) 48
  5. 유해근, 배현숙, 강희숙, 김흥희, 이종국, J. Kor. Inst.Met. & Mater, 15 (2002) 39
  6. T. Ibusuki, K. Takeuchi, Atmos. Environ., 20 (1986) 1711 https://doi.org/10.1016/0004-6981(86)90119-8
  7. V. M. Dubin et al., IEEE Proc. International Interconnect Technology Conference, 1 (2001) 271
  8. V. M. Dubin, K. Hong, N. Baxter, U.S. Patent No.6, 491, 806
  9. K. Hong, J.-K. Kim, S.-K. Lee et al., Phys. Stat. Sol., 241 (2004) 1681 https://doi.org/10.1002/pssb.200304577
  10. 이태규, 주현규, 설용건, 최원용, 최재훈(오정무, 이경원 편저), '98에너지 기술개발 동향-광화학에너지 변화 및 활용기술, 한국과학기술 평가원(KISTEP), 1999
  11. 주현규, 전명석, 이태규, 대한환경공학회지, 21 (1999) 6
  12. D. H. Kim, T. K. Lee, K. B. Kim, S. W. Lee, Korean Journal of Materials Reaserch, 6 (1996) 3
  13. 윤재경, 강준원, 이태규, 전명석, 주현규, 대한환경공학회지, 21 (1999) 5