DOI QR코드

DOI QR Code

A Study on the Annealed Properties of ITO Thin Film Deposited by RF-superimposed DC Reactive Magnetron Sputtering

RF/DC 동시인가 마그네트론 스퍼터링 방법으로 증착된 ITO 박막의 열처리 특성 연구

  • Moon, Jin-Wook (Department of Advanced Materials Engineering, Kyonggi University) ;
  • Kim, Dong-Won (Department of Advanced Materials Engineering, Kyonggi University)
  • 문진욱 (경기대학교 재료공학과) ;
  • 김동원 (경기대학교 재료공학과)
  • Published : 2007.06.30

Abstract

The ITO films were deposited on glass substrates by RF-superimposed dc reactive magnetron sputtering and were annealed in $N_2$ vacuum furnace with temperatures in the range of $403K{\sim}573K$ for 30 minutes. Electrical, optical and structural properties of ITO films were examined with varying annealing temperatures from 403 K to 573 K. The resistivity of as-deposited ITO films was $5.4{\times}10^{-4}{\Omega}cm$ at the sputter conditions of applied RF/DC power of 200/200 W, $O_{2}$ flow of 0.2 seem and Ar flow of 0.2 seem. As a result of annealing in the temperature range of $403K{\sim}573K$, the crystallization occurred at 423 K that is lower than the crystallization temperature caused by a conventional sputtering method. And the resistivity decreased from $5.4{\times}10^{-4}{\Omega}cm\;to\;2.3{\times}10^{-4}{\Omega}cm$, the carrier concentration and mobility of ITO films increased from $4.9{\times}10^{20}/cm^3\;to\;6.4{\times}10^{20}/cm^3$, from $20.4cm^2/Vsec\;to\;41.0cm^2/Vsec$, respectively. The transmittance of ITO films in visible became higher than 90% when annealed in the temperature range of $423K{\sim}573K$. High quality ITO thin films made by RF-superimposed dc reactive magnetron sputtering and annealing in $N_2$ vacuum furnace will be applied to transparent conductive oxides of the advanced flat panel display.

Keywords

References

  1. J. E. Costellamo, Handbook of Display Technology, Academic Press, New York (1992)
  2. M. J. Alam, D. C. Cameron, Thin Solid Films, 420 (2002) 76 https://doi.org/10.1016/S0040-6090(02)00737-X
  3. C. G. Granqvist, A. Hultaker, Thin Solid Films, 411 (2002) 1 https://doi.org/10.1016/S0040-6090(02)00163-3
  4. K. Zhang, F. Zhu, C. H. A. Huan, A. T. S. Wee, J. Appl. Phys., 86 (1999) 974 https://doi.org/10.1063/1.370834
  5. J. K. Sheu, Y. K. Su, G. C. Chi, M. J. Jou, C. M. Chang, Appl. Phys. Lett., 72 (1998) 3317 https://doi.org/10.1063/1.121636
  6. Y. Hoshi, H. O. Kato, K. Funatsu, Thin Solid Films, 445 (2003) 245 https://doi.org/10.1016/S0040-6090(03)01182-9
  7. M. Bender, J. Trube, J. Stollenwerk, Appl. Phys A, 69 (1999) 397 https://doi.org/10.1007/s003390051021
  8. M. Stowell, J. Muller, M. Ruske, M. Lutz, T. Linz, Thin Solid Films, (2007) doi:10.1016/j.tsf.2006.11.166
  9. Y. Hoshi, T. Kiyomura, Thin Solid Films, 411 (2002) 36 https://doi.org/10.1016/S0040-6090(02)00170-0
  10. B. M. Koo, S. J. Jung, Y. H. Han, J. J. Lee, J. H. Joo, 한국표면공학회지, 37 (2004) 146
  11. I. Hamberg, C. G. Granqvist, J. Appl. Phys., 60 (1986) 123 https://doi.org/10.1063/1.337534
  12. S. Muranaka, Y. Bando, T. Takada, Thin Solid Films, 151 (1987) 355 https://doi.org/10.1016/0040-6090(87)90134-9
  13. L. A. Ryabova, V. S. Salun, I. A. Serbinov, Thin Solid Films, 92 (1982) 327 https://doi.org/10.1016/0040-6090(82)90156-0
  14. I. Y. Lee, K. A. Lee, 한국광학회지, 11 (2000) 152
  15. W. Wang, J. Xu, X. Kiu, Y. Jing, G. Wang, X. Lu, Thin Solid Films, 365 (2000) 116 https://doi.org/10.1016/S0040-6090(00)00649-0
  16. H. Kim, C. M. Gilmore, J. Appl. Phys., 86 (1999) 6451 https://doi.org/10.1063/1.371708
  17. K. L. Chopra, S. Major, D. K. Pandya, Thin Solid Films, 102 (1996) 146
  18. S. E. Dyer, O. J. Gregory, P. S. Amons, A. B. Dlot, Thin Solid Films, 288 (1996) 279 https://doi.org/10.1016/S0040-6090(96)08865-7
  19. L. Bardos, M. Libra, Vacuum, 39 (1989) 33 https://doi.org/10.1016/0042-207X(89)90095-X
  20. J. C. Manifacier, J. P. Fillard, J. Appl. Phys., 77 (1991) 67
  21. H. Omoto, A. Takamatsu, T. Kobayashi, Vacuum, 80 (2006) 783 https://doi.org/10.1016/j.vacuum.2005.11.031
  22. Y. Hu, X. Diao, C. Wang, W.Hao, T. Wang, Vacuum, 75 (2004) 183 https://doi.org/10.1016/j.vacuum.2004.01.081
  23. H. C. Lee, Applied Surface Science, 252 (2006) 2647 https://doi.org/10.1016/j.apsusc.2005.02.128
  24. H. Morikawa, H. Sumi, M. Kohyama, Thin Solid Films, 281 (1996) 202 https://doi.org/10.1016/0040-6090(96)08613-0
  25. M. Kamei, Y. Shigesato, S. Takaki, Thin Solid Films, 259 (1995) 38 https://doi.org/10.1016/0040-6090(94)06390-7
  26. Y. H. Tak, K. B. Kim, H. G. Park, K. H. Lee, J. R. Lee, Thin Solid Films, 411 (2002) 12 https://doi.org/10.1016/S0040-6090(02)00165-7

Cited by

  1. Effect of ITO Layer on Electrical and Optical Properties of GZO/ITO Double-layered TCO Films Deposited by RF Magnetron Sputtering for Application to Solar Cells vol.44, pp.6, 2011, https://doi.org/10.5695/JKISE.2011.44.6.260
  2. Effect of Vacuum Annealing on the Properties of ITO Thin Films vol.26, pp.2, 2013, https://doi.org/10.12656/jksht.2013.26.2.55
  3. Effect of Annealing on the Electrical Property and Water Permeability of ZTO/GZO Double-layered TCO Films Deposited by DC, RF Magnetron Co-sputtering vol.45, pp.3, 2012, https://doi.org/10.5695/JKISE.2012.45.3.117