DOI QR코드

DOI QR Code

두 가지 항산화유전자를 동시에 발현시킨 형질전환 톨 페스큐 식물체의 환경스트레스에 대한 내성 특성 해명

Characterization of Transgenic Tall Fescue Plants Expressing Two Antioxidant Genes in Response to Environmental Stresses

  • 이상훈 (농촌진흥청 축산과학원) ;
  • 이기원 (경상대학교 응용생명과학부) ;
  • 김기용 (농촌진흥청 축산과학원) ;
  • 최기준 (농촌진흥청 축산과학원) ;
  • 서성 (농촌진흥청 축산과학원) ;
  • 곽상수 (한국생명공학연구원 바이오소재연구부) ;
  • 권석윤 (한국생명공학연구원 바이오소재연구부) ;
  • 윤대진 (경상대학교 응용생명과학부) ;
  • 이병현 (경상대학교 응용생명과학부)
  • Lee, Sang-Hoon (National Institute of Animal Scince, RDA) ;
  • Lee, Ki-Won (Division of Applied Life Science (BK21 program), Gyeongsang National University) ;
  • Kim, Ki-Yong (National Institute of Animal Scince, RDA) ;
  • Choi, Gi-Jun (National Institute of Animal Scince, RDA) ;
  • Seo, Sung (National Institute of Animal Scince, RDA) ;
  • Kwak, Sang-Soo (Division of Biomaterials Science, Korea Research Institute of Bioscience & Biotechnology) ;
  • Kwon, Suk-Yoon (Division of Biomaterials Science, Korea Research Institute of Bioscience & Biotechnology) ;
  • Yun, Dae-Jin (Division of Applied Life Science (BK21 program), Gyeongsang National University) ;
  • Lee, Byung-Hyun (Division of Applied Life Science (BK21 program), Gyeongsang National University)
  • 발행 : 2007.06.30

초록

환경스트레스에 강한 내성을 지닌 신품종 톨페스큐를 개발할 목적으로 산화스트레스에 의해 강하게 유도되는 SWPA2 promoter 하류에 CuZnSOD와 APX 유전자가 엽록체에 동시에 발현하도록 제작한 벡터를 Agrobacterium법을 이용하여 톨 페스큐에 도입하였다. Hygromycin이 첨가된 선발배지에서 내성을 가지며 재분화된 형질전환 식물체를 pot로 이식하여 기내 순화시킨 후, Southern 분석을 실시하여 본 결과, 발현벡터의 T-DNA 영역이 형질전환 식물체의 genome에 성공적으로 도입되었음을 확인하였다. 형질전환 식물체 잎 절편을 산화스트레스와 중금속을 포함하고 있는 용액에 처리하여 엽록체의 손상정도를 조사한 결과, 비형질 전환체에 비해 형질전환체는 강한 내성을 나타내었다. 또한 유식물체 수준에서 MV를 처리하여 내성을 비교한 결과, 비형질전환체에 비해 형질전환체는 손상을 덜 받았다. 이와 같은 연구결과는 CuZnSOD와 APX 유전자를 엽록체에 동시발현시키는 기술이 다양한 환경스트레스에 대해 복합재해내성을 가지는 다양한 작물을 개발하는데 유용하게 이용될 수 있음을 나타낸 결과이다.

Environmental stress is the major limiting factor in plant productivity. As an effort to solve the global food and environmental problems using the plant biotechnology, we have developed transgenic tall fescue (Festuca arundinacea Schreb.) plants via Agrobacterium-mediated gene transfer method. To develop transgenic tall fescue plants with enhanced tolerance to the environmental stresses, both CuZn superoxide dismutase (CuZnSOD) and ascorbate peroxidase (APX) genes were incorporated in a pIG121 binary vector and the both of the genes were controlled separately by an oxidative stress-inducible sweet potato peroxidase 2 (SWPA2) premoter expressed in chloroplasts. Leaf discs of transgenic plants showed 10-30% less damage compared to the wild-type when they exposed to a wide range of environmental stresses including methyl viologen (MV), $H_2O_2$ and heavy metals. In addition, when $200{\mu}M$ MV was sprayed onto the whole plants, transgenic plants showed a significant reduction of visible damage compared to wild-type plants that were almost damaged. These results suggest that over expression of CuZnSOD and APX genes in transgenic plants might be a useful strategy to protect the crops against a wide range of environmental stresses.

키워드

참고문헌

  1. Allen, R.D., R.P. Webb and S.A. Schake. 1997. Use of transgenic plants to study antioxidant defenses. Free Radical Biol. Med.. 23:473-479 https://doi.org/10.1016/S0891-5849(97)00107-X
  2. Asada, K. 1999. The water-water cycle in chloroplasts: scavenging of active oxygens and dissipation of excess photons. Annu. Rev. Plant Physiol. Plant Mol. Biol.. 50: 601-639 https://doi.org/10.1146/annurev.arplant.50.1.601
  3. Buckner, R.C., J.B., Powell and R.V. Frakes. 1979. Historical development. In: Buckner RC, Bush LP(eds) Tall Fescue. Agronomy 20:1-8
  4. Balestrasse K.B., G.O. Noriega, A. Batlle and M.L. Tomaro. (2006) Heme oxygenase activity and oxidative stress signaling in soybean leaves. Plant Sci.. 170:339-346 https://doi.org/10.1016/j.plantsci.2005.09.001
  5. Dong, S. and R. Qu. 2005. High efficiency transformation of tall fescue with Agrobacterium tumefaciens. Plant Sci. 168:1453-1458 https://doi.org/10.1016/j.plantsci.2005.01.008
  6. Wang, Z.-Y. and Y. Ge. 2005 Agrobacterium-mediated high efficiency transformation of tall fescue (Festuca arundinacea Schreb.). J. Plant Physiol. 162:103-113 https://doi.org/10.1016/j.jplph.2004.07.009
  7. Foyer, C.H., P. Descourvierse, and K.J. Kunert. 1994. Protection against oxygen radicals: an important defense mechanism studied in transgenic plants. Plant Cell Environ. 17:507-523 https://doi.org/10.1111/j.1365-3040.1994.tb00146.x
  8. Kim, K.Y., S.Y. Kwon, H.S. Lee, Y. Hur, J.W. Bang and S.S. Kwak. 2003. A novel oxidative stress-inducible peroxidase promoter from sweetpotato: molecular cloning and characterization in transgenic tobacco plants and cultured cells. Plant Mol. Biol.. 51:831-838 https://doi.org/10.1023/A:1023045218815
  9. Kwon, S.Y., Y.J. Jeong, H.S. Lee, J.S. Kim, K.Y. Cho, R.D. Allen and S.S. Kwak. 2002. Enhanced tolerances of transgenic tobacco plants expressing both superoxide dismutase and ascorbate peroxidase in chloroplasts against methyl viologen-mediated oxidative stress. Plant Cell Environ. 25:873-882 https://doi.org/10.1046/j.1365-3040.2002.00870.x
  10. Lee, S.-H., D.-G. Lee, H.-S. Woo, K.-W. Lee, D.-H. Kim, S.-S. Kwak, J.S. Kim, H.G. Kim, N. Ahsan, MS. Choi, JK. Yang and B.-H. Lee. 2006. Production of transgenic orchard- grass via Agrobacterium-mediated transfor- mation of seed-derived callus tissues. Plant Sci. 171:408-414 https://doi.org/10.1016/j.plantsci.2006.05.006
  11. Lee, S.-H., D.-G. Lee, H.-S Woo and B.-H. Lee. 2004. Development of transgenic tall fescue plants from mature seed-derive callus via Agrobacterium-mediated transformation. Asian-Aust J. Anim. Sci. 17:1390-1394 https://doi.org/10.5713/ajas.2004.1390
  12. Lee, H.S., K.Y. Kim, S.H. You, S.Y. Kwon and S.S. Kwak. 1999. Molecular characterization and expression of a cDNA encoding copper/zinc superoxide dismutase from cultured cells of cassava (Manihot esculenta Crantz). Mol. Gen. Genet. 262:807-814
  13. Murashige T. and F. Skoog. 1962. A revise medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plant 15:473-497 https://doi.org/10.1111/j.1399-3054.1962.tb08052.x
  14. Murray, M.G. and P.F. Tompson. 1980. Rapid isolation of high molecular weight plant DNA. Nucleic Acid Res. 8:4321-4325 https://doi.org/10.1093/nar/8.19.4321
  15. Noctor, G. and C.H. Foyer. 1998. Ascorbate and glutathine: keeping active oxygen under control. Annu Rev. Plant Physiol. Plant Mol.. Biol.. 49:249-279 https://doi.org/10.1146/annurev.arplant.49.1.249
  16. Spangenberg, G., Z.Y. Wang and I. Potrykus. 1998. Biotechnology in forage and turf grass improvement. In: Frankel et al (Eds), Monographs on theoretical and applied genetics, Vol. 23, Springer Verlag, Heidelberg, p.192-211
  17. Tang, L., S.Y. Kwon, S.H. Kim, J.S. Kim, J.S. Choi, K.Y. Cho, C.K. Sung, S.S. Kwak and H.S. Lee. 2006. Enhanced tolerance of transgenic potato plants expressing both superoxide dismutase and ascorbate peroxidase in chloroplasts against oxidative stress and high temperature Plant Cell Rep. 25: 1380-1386 https://doi.org/10.1007/s00299-006-0199-1