Gas Separation Properties and Their Applications of High Permeable Amorphous Perfluoropolymer Membranes

고투과성 무정형 불소고분자 불리막의 기체분리 특성 및 응용

  • Freeman, Benny D. (Department of Chemical Engineering, Center for Energy and Environmental Resources, University of Texas at Austin) ;
  • Park, Ho-Bum (Department of Chemical Engineering, Center for Energy and Environmental Resources, University of Texas at Austin)
  • 베니 프리만 (미국 오스틴 텍사스 주립대학교 화학공학과) ;
  • 박호범 (미국 오스틴 텍사스 주립대학교 화학공학과)
  • Published : 2007.06.30

Abstract

Membrane-based separation processes are receiving increasing attention in the scientific community and industry since they provide a desirable alternative to processes that are not easy to achieve by conventional separation technologies. In particular, gas separation using polymeric membranes have annually grown so fast owing to advantages such as easy installation, no moving parts, small footprint and low energy process. The key element is definitely a polymer membrane exhibiting high permeability and high selectivity to compete with other gas separation technologies. Current polymer membranes used for commercial gas separation are a family of hydrocarbon polymers for hydrogen separation, air separation and carbon dioxide separation from natural gas sweetening. Relatively, gas or vapor separation properties of fluoropolymers are not known so much as compared with those of hydrocarbon polymers. Accordingly, in this study, membranes prepared from amorphous perfluoropolymers are of particular interest because of the unique properties of these polymers. The advantages offered by these amorphous perfluoropolymers for use in gas and vapor separation will be discussed. In addition, membrane properties and separation performance will be compared with other membranes available on the market.

막 분리공정은 기존의 분리공정이 달성하기 쉽지 않은 많은 공정들을 대체할 수 있기 때문에 관련 학계나 산업체에서 많은 관심을 받고 있다. 특히, 고분자막을 이용한 기체분리공정은 해마다 가파른 성장세를 보이는데 이는 주로 기존의 기체분리공정에 비해 설치가 용이하고 분리공정에 필요한 에너지를 절약할 수 있기 때문이다. 고분자막을 이용한 기체분리의 가장 중요한 요소는 물론 뛰어난 선택적 투과성을 가지는 소재의 개발에 있다. 현재 상업적으로 쓰이고 있는 대부분의 기체분리용 고분자막을 폴리술폰, 폴리카보네이트 및 폴리이미드와 같은 탄화수소계열의 고분자소재이며, 이들은 수소분리, 산소부화, 천연가스에서 이산화탄소분리 등 다양한 용도로 사용되고 있다. 이와는 상대적으로 불소고분자막들에 대한 기체분리특성은 탄화수소계열의 고분자막에 비교하여 그다지 많이 알려지지는 않았다. 따라서 본 논문에서는 무정형 불소고분자로부터 제조된 고분자막에 대한 기체 및 증기분리특성에 대해 자세하게 살펴보고자 한다. 이러한 불소고분자들은 종종 기존의 탄화수소계열의 고분자막과는 상이한 기체 투과 및 분리특성을 보이며, 따라서 본 논문에서는 이러한 기체분리거동을 활용한 적용방안에 대해서도 알아보고자 한다.

Keywords

References

  1. R. J. Plunkett, 'Tetrafluoroethylene polymers', US Patent 2,230,654 (1941)
  2. J. G. Drobny, 'Technology of fluoropolymer', CRC Press, Boca Raton, FL, USA, pp.172 (2001)
  3. J. Scheirs, 'Modern fluoropolymers', Wiley, Victoria, Australia (1997)
  4. J. U. Won, J. P. Joen, and B. J. Lee, 'Recent development of fluoropolymers', Polym. Sci. Tech., 13, 724 (2002)
  5. J. E. Mark, 'Polymer data handbook', Oxford, New York, NY, USA (1999)
  6. H. Schroeder, 'Fluorocarbon elastomers', Rubber Technology, Ed. M. Morton, Van Nostrand Reinhold, New York, NY, USA, pp.631 (1987)
  7. V. Arcella, A. Ghielmi, and G. Tommasi, 'High performance perfluoropolymer films and membranes', Ann. NY Acad. Sci., 984, 226 (2003) https://doi.org/10.1111/j.1749-6632.2003.tb06002.x
  8. W. W. Brandt and G. A. Anysas, 'Diffusion of gases in fluorocarbon polymers', J. Appl. Polym. Sci., 7, 1919 (1963) https://doi.org/10.1002/app.1963.070070527
  9. R. A. Pasternak, M. V. Christensen, and J. Heller, 'Diffusion and permeation of oxygen, nitrogen, carbon dioxide, and nitrogen dioxide through polytetrafluoroethylene', Macromolecules, 3, 366 (1970) https://doi.org/10.1021/ma60015a020
  10. R. A. Pasternak, G. L. Burns, and J. Heller, 'Diffusion and solubility of simple gases through a copolymer of hexafluoropropylene and tetrafluoroethylene', Macromolecules, 4, 470 (1971) https://doi.org/10.1021/ma60022a022
  11. S. Satoh and T. Suzuki, 'Rubber hose for automotive fuel line', US Patent 4,330,017 (1982)
  12. J. R. Pailthorp and H. E. Schroeder, 'Elastomeric terpolymers', US Patent 2,968,649 (1961)
  13. J. D. MacLachlan, 'Automotive fuel permeation resistance - A comparison of elastomeric materials', Paper No. 790657 at SAE Passenger Car Meeting, Detroit, MI, USA (1979)
  14. N. Yi-Yan, R. M. Felder, and W. J. Koros, 'Selective permeation of hydrocarbon gases in polytetrafluoroethylene and poly(fluoroethylene-propylene) copolymer', J. Appl. Polym. Sci., 25, 1755 (1980) https://doi.org/10.1002/app.1980.070250822
  15. T. Duncan, W. J. Koros, and R. M. Felder, 'Permeation of methyl chloride and benzene through FEP Teflon', J. Appl. Polym. Sci., 28, 209 (1983) https://doi.org/10.1002/app.1983.070280118
  16. S. Pauly, 'Permeability and diffusion data', Polymer handbook, Eds. J. Brandrup and E. H. Immergut, John Wiley & Sons, Inc., New York, NY, USA (1989)
  17. J. S. McHattie, W. J. Koros, and D. R. Paul, 'Gas transport properties of polysulphones: 2. Effect of biphenol connector groups', Polymer, 32, 2618 (1991) https://doi.org/10.1016/0032-3861(91)90343-H
  18. M. W. Hellums, W. J. Koros, G. R. Husk, and D. R. Paul, 'Fluorinated polycarbonates for gas separation applications', J. Membr. Sci., 46, 93 (1989) https://doi.org/10.1016/S0376-7388(00)81173-4
  19. K. Tanaka, H. Kita, M. Okano, and K. Okamoto, 'Permeability and permselectivity of gases in fluorinated and non-fluorinated polyimides', Polymer, 33, 585 (1992) https://doi.org/10.1016/0032-3861(92)90736-G
  20. T. H. Kim, W. J. Koros, and G. R. Husk, 'Relationship between gas separation properties and chemical structure in a series of aromatic polyimides', J. Membr. Sci., 37, 45 (1988) https://doi.org/10.1016/S0376-7388(00)85068-1
  21. S. A. Stern, 'Polymers for gas separations: the next decade', J. Membr. Sci., 94, 1 (1994) https://doi.org/10.1016/0376-7388(94)00141-3
  22. E. N. Squire, 'Amorphous copolymers of perfluoro- 2,2-dimethyl-1,3-dioxole', US Patent 4,754,009 (1988)
  23. E. N. Squire, 'Optical fibers comprising cores clad with amorphous copolymers of perfluoro-2,2-dimethyl- 1,3-dioxole', US Patent 4,530,569 (1985)
  24. P. R. Resnick and W. H. Buck, 'Teflon AF: A family of amorphous fluoropolymers with extraordinary properties', Fluoropolymers vol.2: properties, Eds., G. Hougham, P. E. Cassidy, K. Johns, and T. Davidson, Kluwer Academic/Plenum Publishers New York, NY, USA, pp.25-33 (1999)
  25. T. C. Merkel, I. Pinnau, R. Prabhakar, and B. D. Freeman, 'Gas and vapor transport properties of perfluoropolymers', Materials science of membranes for gas and vapor separation, Eds., Y. Yampolskii, I. Pinnau, and B. D. Freeman, John Wiley & Sons Ltd, Chichester, England, pp.251-267 (2006)
  26. T. C. Merkel, V. I. Bondar, K. Nagai, B. D. Freeman, and Y. Yampolskii, 'Gas sorption, diffusion and permeation in poly(2,2-bistrifluoro-methyl-4,5- difluoro-1,3-dioxole-co-tetrafluoro-ethylene', Macromolecule, 32, 8427 (1999) https://doi.org/10.1021/ma990685r
  27. S. M. Nemser, K. P. Callaghan, and T. C. Reppert, 'Combustion engine air supply system', US Patent 5,960,777 (1999)
  28. L. M. Robeson, 'Correlation of separation factor versus permeability for polymeric membranes', J. Membr. Sci., 62, 165 (1991) https://doi.org/10.1016/0376-7388(91)80060-J
  29. B. D. Freeman, 'Basis of permeability/selectivity tradeoff relations in polymeric gas separation membranes', Macromolecules, 32, 375 (1999) https://doi.org/10.1021/ma9814548
  30. H. Ohya, V. V. Kudryavtsev, and S. I. Semenova, 'Polyimide membranes - applications, fabrications, and properties', Gordon and Breach Publishers, Amsterdam, The Netherlands (1996)
  31. S. M. Nermser and I. C. Roman, 'Perfluorinated membranes', US Patent 5,051,114 (1991)
  32. I. Pinnau and L. G. Toy, 'Gas and vapor transport properties of amorphous perfluorinated copolymer membranes based on 2,2-bistrifluoromethyl-4,5-difluoro- 1,3-dioxole/tetrafluoroethylene', J. Membr. Sci., 109, 125 (1996)
  33. M. Jia, K. V. Peinemann, and R. D. Behling, J. Membr. Sci., 289, 57 (1991)
  34. S. Kulprathipanja, R. W. Neuzil, and N. Li, 'Separation of fluids by means of mixed matrix membranes', US Patent 4,740,219 (1988)
  35. R. Mahajan, C. M. Zimmerman, and W. J. Koros, Polymer Membranes for Gas and Vapor Separation: Chemistry and Materials Science, Eds., B. D. Freeman and I. Pinnau, American Chemical Society Washington, DC, pp.277 (1999)
  36. T. C. Merkel, B. D. Freeman, R. J. Spontak, Z. He, I. Pinnau, P. Meakin, and A. J. Hill, 'Ultrapermeable, reverse-selective nanocomposite membranes', Science, 296, 519 (2002) https://doi.org/10.1126/science.1069580
  37. T. C. Merkel, B. D. Freeman, Z. He, I. Pinnau, P. Meakin, and A. J. Hill, 'Nanoparticle on gas sorption and transport in poly(1-trimethylsilyl-1-propyne)', Macromolecules, 36, 6844 (2003)
  38. T. C. Merkel, Z. He, I. Pinnau, B. D. Freeman, P. Meakin, and A. J. Hill, 'Sorption and transport in poly(2,2-bis(trifluoromethyl)-4,5-difloro-1,3-dioxoleco-tetra fluoroethylene) containing nanoscale fumed silica', Macromolecules, 36, 8406 (2003) https://doi.org/10.1021/ma034975q
  39. W. H. Koch, 'Developing technology for enhanced vapor recovery: Part 1-vent processors', Petroleum Equip. & Tech., 16 (2001)
  40. J. S. Chiou and D. R. Paul, 'Gas permeation in a dry Nafion membrane', Ind. Eng. Chem. Res., 27, 2161 (1988) https://doi.org/10.1021/ie00083a034