문항 응답 데이터에서 문항간 연관규칙의 질적 향상을 위한 도구 개발

A Measure for Improvement in Quality of Association Rules in the Item Response Dataset

  • 곽은영 (고려대학교 컴퓨터교육과) ;
  • 김현철 (고려대학교 컴퓨터교육과)
  • 투고 : 2006.10.23
  • 심사 : 2007.01.25
  • 발행 : 2007.05.31

초록

본 논문은 연관규칙 마이닝을 이용하여 성취도 평가 결과인 문항 응답 데이터를 대상으로 의미있는 문항간 관련성을 찾아낼 수 있는 도구를 개발하는데 연구의 목적이 있다. 제안된 도구는 의미없는 데이터들을 제거하여 보다 더 흥미(interestingness)있는 연관규칙을 생성하도록 하며, 이러한 결과는 교수-학습 방법이나 문제은행의 질을 향상시키는데 필요한 많은 정보를 제공할 수 있을 것이다. 이를 위하여 임의의 문항 응답 실험 데이터 집합을 생성하고 정보이론(Information Theory) 기반의 surprisal 이라는 도구를 개발하여 의미 없는 데이트를 제거한 후, 연관규칙을 추출하였다. 실험 데이터는 특정 문항간 관계가 의도적으로 빈발 생성되도록 만들어지며, 추출된 연관규칙이 그러한 문항간 관계를 적절히 반영하고 있는지의 여부를 평가하고, 원본 데이터와 지지도(support) 기반으로 추출된 연관규칙과 비교함으로써 surprisal 도구의 타당성을 증명하였다.

In this paper, we introduce a new measure called surprisal that estimates the informativeness of transactional instances and attributes in the item response dataset and improve the quality of association rules. In order to this, we set artificial dataset and eliminate noisy and uninformative data using the surprisal first, and then generate association rules between items. And we compare the association rules from the dataset after surprisal-based pruning with support-based pruning and original dataset unpruned. Experimental result that the surprisal-based pruning improves quality of association rules in question item response datasets significantly.

키워드