Microstrip Patch Antenna를 이용한 탄소섬유시트 보강콘크리트의 박리 탐사

Delamination Detection of FRP Sheet Reinforced Concrete Using Microstrip Patch Antenna

  • 임홍철 (연세대학교 건축공학과) ;
  • 이효석 (연세대학교 대학원 건축공학과) ;
  • 우상균 (한국전력공사 전력연구원) ;
  • 송영철 (한국전력공사 전력연구원)
  • 발행 : 2007.04.30

초록

중심주파수가 15 GHz이고, 대역폭이 1 GHz인 마이크로 스트립 패치 안테나를 이용하여, 탄소섬유시트로 보강된 콘크리트의 계면박리를 탐사하는 실험을 실시하였다. 개발된 안테나의 성능을 비교하기 위하여, 중심주파수 15 GHz, 대역폭 10 GHz인 상용 horn 안테나를 이용하여 비교실험을 실시하였다. 실험에 사용된 시편은 $600\;{\times}\;600\;{\times}\;50\;mm$의 크기를 가지며, 그 표면에 1.5 mm 두께의 FRP 시트를 3 mm 두께의 에폭시로 부착하였으며, 5, 10, 15 mm 두께의 박리를 인공적으로 형성하였다. 실험결과 5, 10, 15 mm 박리 모두 측정이 가능하였으며, 측정은 보강구역과 무보강구역을 구분하여 이루어 졌다.

A series of experimental work has been conducted to evaluate the capability of microstrip patch antenna system in detecting delamination in fiber reinforced Plastic (FRP) sheet reinforced concrete. For that purpose, a prototype microstrip patch antenna was developed with 15 GHz center frequency and 1 GHz bandwidth. For the comparison, a horn antenna with 15 GHz center frequency and 10 GHz bandwidth was used for the measurements of the same specimens. The laboratory sire specimens have the dimensions of 600 mm (length) $\times$ 600 mm (width) $\times$ 50mm (thickness) with a series of delaminations of 300 mm (length) $\times$ 300mm (width) $\times$ 5, 10, 15 mm (thickness). FRP of 1.5 mm thickness and epoxy of 3 mm thickness were placed on the top of artificially created delamination to represent actual FRP reinforced concrete condition. In all cases, the delamination has deen successfully identified. Also, it was shown that imaging results in microstrip patch antenna were improved by signal processing.

키워드

참고문헌

  1. C. Chen and C. Li. 'Punching shear strength of reinforced concrete slabs strengthened with glass fiber-reinforced polymer laminates,' ACI Structural Journal, Vol. 102, No.4, pp. 535-542, (2005)
  2. 안성호, 이상호, 'FRP로 보강된 철근콘크리트보의 휩 보강설계', 대한건축학회논문집 구조계, 제21권, 제5호, pp. 51-58, (2005)
  3. M. Reed, R. Barnes, A. Schindler and H. Lee, 'Fiber-reinforced polymer strengthening of concrete bridges that remain open to traffic,' ACI Structural Journal, Vol. 102, No.6, pp. 823-831, (2005)
  4. 최용기, 권오엽, 배규진, 조만섭, '터널보강재로서 FRP재료의 적용성 검토', 대한터널학회논문집, 제3권, 제1호, pp. 11-19, (2001)
  5. 고훈범, 'FRP 쉬트와 콘크리트 부착성능에 관한 기초연구', 대한건축학회논문집 구조계, 제 22권, 제8호, pp. 69-76, (2006)
  6. F. Bastianini, A. Tommaso and G. Pascale, 'Ultrasonic non-destructive assessment of bonding defects in composite structural strengthenings,' Composite Structures, Vol. 53, pp. 463-467, (2001) https://doi.org/10.1016/S0263-8223(01)00058-7
  7. Y. Kim, L. Jofre, F. Flaviis and M. Feng, 'Microwave reflection tomographic array for damage detection of civil structures,' IEEE Transactions on Antennas and Propagation, Vol. 51, No. 11, pp. 3022-3032, (2003) https://doi.org/10.1109/TAP.2003.818786
  8. S. Bakhtiari, N. Qaddoumi, S. Ganchev and R. Zoughi, 'Microwave noncontact examination of disbond and thickness variation in stratified composite media,' IEEE Transactions on Microwave Theory and Techniques, Vol. 42, No.3, pp. 389-395, (1994) https://doi.org/10.1109/22.277431
  9. H. Rhim and O. Buyukozturk, 'Wide band microwave imaging of concrete for nondestructive testing,' ASCE Journal of Structural Engineering, Vol. 126, No. 12, pp. 1451-1457, (2000) https://doi.org/10.1061/(ASCE)0733-9445(2000)126:12(1451)
  10. M. Feng, F. Flavis and Y. Kim, 'Use of microwaves for damage detection of fiber reinforced polymer-wrapped concrete structures,' Journal of Engineering Mechanics, Vol. 128, No.2, pp. 172-183, (2002)
  11. M. Feng, C. Liu, X. He and M. Shinozuka, 'Electromagnetic image reconstruction for damage detection,' Journal of Engineering Mechanics, Vol. 126, No.7, pp. 725-729, (2000) https://doi.org/10.1061/(ASCE)0733-9399(2000)126:7(725)