DOI QR코드

DOI QR Code

INTERVAL-VALUED FUZZY SEMI-PREOPEN SETS AND INTERVAL-VALUED FUZZY SEMI-PRECONTINUOUS MAPPINGS

  • Jun, Young-Bae (Department of Mathematics Education (and RINS) Gyeongsang National University) ;
  • Kim, Sung-Sook (Department of Applied Mathematics Paichai University) ;
  • Kim, Chang-Su (Department of Mathematics Education (and RINS) Gyeongsang National University)
  • Received : 2007.03.08
  • Accepted : 2007.05.07
  • Published : 2007.06.25

Abstract

We introduce the notions of interval-valued fuzzy semipreopen sets (mappings), interval-valued fuzzy semi-pre interior and interval-valued fuzzy semi-pre-continuous mappings by using the notion of interval-valued fuzzy sets. We also investigate related properties and characterize interval-valued fuzzy semi-preopen sets (mappings) and interval-valued fuzzy semi-precontinuous mappings.

Keywords

References

  1. K. Atanassov, Intuitionistic fuzzy sets, Fuzzy Sets and Systems 20 (1986), 87-96. https://doi.org/10.1016/S0165-0114(86)80034-3
  2. K. K. Azad, On fuzzy semicontinuity, fuzzy almost continuity and fuzzy weakly continuity, J. Math. Anal App. 82 (1981), 14-32. https://doi.org/10.1016/0022-247X(81)90222-5
  3. S. Z. Bai, Fuzzy strongly semiopen sets and fuzzy strong semicontinuity, Fuzzy Sets and Systems 52 (1992), 345-351. https://doi.org/10.1016/0165-0114(92)90242-V
  4. R. Biawas, Rosenfeld's fuzzy subgroups with interval-valued membership functions, Fuzzy Sets and Systems 63 (1994), 87-90. https://doi.org/10.1016/0165-0114(94)90148-1
  5. A. S. Bin Shahna, On fuzzy, strong semicontinuity and fuzzy precontinuity, Fuzzy Sets and Systems, 44 (1991), 303-308. https://doi.org/10.1016/0165-0114(91)90013-G
  6. M. B. Gorzalczany, A method of inference in approximate reasoning based on interval-valued fuzzy sets, Fuzzy Sets and Systems 21 (1987), 1-17. https://doi.org/10.1016/0165-0114(87)90148-5
  7. Y. B. Jun, J. H. Bae, S. H. Cho and C. S. Kim, Interval-valued fuzzy strong semi-openness and interval-valued fuzzy strong semi-continuity, Honam Math. J. 28 (2006), no. 3, 417-431.
  8. Y. B. Jun, J. H. Bae, S. H. Cho and C. S. Kim, Interval-valued fuzzy strong semi-open sets, East Asian Math. J. (submitted).
  9. Y. B. Jun, G. C. Kang and M. A. Ozturk, Interval-valued fuzzy semiopen, preopen and a-open mappings, Honam Math. J. 28 (2006), no. 2, 241-259.
  10. T. K. Mondal and S. K. Samanta, Topology of interval-valued fuzzy sets, Indian J. Pure Appl. Math. 30 (1999), no. 1, 23-38.
  11. T. K. Mondal and S. K. Samanta, Connectedness in topology of interval-valued fuzzy sets, Italian J. Pure Appl. Math. 18 (2005), 33-50.
  12. T. K. Mondal and S. K. Samanta, Topology of interval-valued fuzzy sets, Indian J. Pure Appl. Math. 30 (1999), no. 1, 23-38.
  13. J. H. Park, J. S. Park and Y. C. Kwun, On fuzzy inclusion in the interval-valued sense, FSKG 2005, LANI 3613, Springer-Verlag (2005), 1-10.
  14. P. V. Ramakrishnan and V. Lakshmana Gomathi Nayagam, Hausdorff interval valued fuzzy filters, J. Korean Math. Soc. 39 (2002), no. 1, 137-148. https://doi.org/10.4134/JKMS.2002.39.1.137
  15. M. K. Roy and R. Biswas, I-v fuzzy relations and Sanchez's approach for medical diagnosis, Fuzzy Sets and Systems 47 (1992), 35-38. https://doi.org/10.1016/0165-0114(92)90057-B
  16. S. S. Thakur and S. Singh, On fuzzy semi-preopen sets and fuzzy semi- precontinuity, Fuzzy Sets and Systems, 98 (1998), 383-391. https://doi.org/10.1016/S0165-0114(96)00363-6
  17. T. H. Yalvag, Semi-interior and semi-closure of a fuzzy set, J. Math. Anal Appl. 132 (1988), 356-364. https://doi.org/10.1016/0022-247X(88)90067-4
  18. W. Zeng and Y. Shi, Note on interval-valued fuzzy set, FSKG 2005, LANI 3613, Springer-Verlag (2005), 20-25.
  19. L. A. Zadeh, Fuzzy sets, Inform. Control 8 (1965), 338-353. https://doi.org/10.1016/S0019-9958(65)90241-X
  20. L. A. Zadeh, The concept of a linguistic variable and its application to approxi­mate reasoning I, Inform. Sci. 8 (1975), 199-249. https://doi.org/10.1016/0020-0255(75)90036-5