References
- Y. Ahn, A characterizaion of Mandelbrot set of quadratic rational maps, Honam Mathematical J. 27: 405-429, (2005).
- A. F. Beardon, Iteration of Rational Functions, Springer-Velag, New York, 1991.
- A. Douady and J. Hub-bard, Iteration des polynomes quadratiques complexes, C. R. Acad. Sci. Paris 294 (1982), 123-126.
- A. Douady, Sysdynamiques holomorphes, Asterisque 105-106 (1982), 39-63.
- P. Fatou, Sur les equations fonctionnelles, Bull. Soc. Math. France 47 (1919), 161-271.
- J. D. Foley, A. van Dam, S. K. Feiner and J. F. Hughes, Computer Graphics, Addsion Wesley, Menlo Park (1990).
- L. Goldberg and L. keen, The mapping class group of a generic quadratic rational map and automorphisms of the 2-shift, invent. Math. 101 (1990), 335-372. https://doi.org/10.1007/BF01231505
- B. Mandelbrot, On the dynamics of iterated maps. Ed. Y. Kuramoto, New York, 1984.
- J. Milnor, Geometry and dynamics of quadratic rational maps. Experimental Mathematics, 2, 37-83.
- H. O. Peitgen and P. H. Richter, The Beauty of Fractals, Springer-Velag, New York, 1986.
- D. Sullivan, Conformal homeomorphisms and dynamics I: Solution of the Fatou-Julia problem on wandering domains, Ann. Math. (1985), 401-418.
- Y. Yin, On the Julia sets of quadratic rational maps, Complex Variables 18 (1992), 141-147. https://doi.org/10.1080/17476939208814540