Factors Affecting Pellet Formation of Phosphate-solubilizing Fungus, Aspergillus sp. PS-104 in Submerged Culture

인산가용화균 Aspergillus sp. PS-104의 액침배양중 Pellet 크기에 영향을 주는 요인

  • Published : 2007.03.31

Abstract

In order to minimize the mycelial pellet size of a high phosphate-solubilizing fungus, Aspergillus sp. PS-104 in liquid media, one of the critical obstacles during the submerged culture of filamentous fungi, an investigation was focused on the culture conditions (media and inoculum size) and additives (different soils, surfactants and polyethylene glycol 200). When the fungus was cultured in PDB, SDB and YPD media. their pellet sizes decreased in the order of SDB=YPD>PDB. At the higher concentrations of initial inoculum ranging from $1{\times}10^3$ to $1{\times}10^7$ conidia/ml, the smaller size of pellet was formed in the PDB medium. In addition, the pellet size was effectively reduced by 1/6${\sim}$1/4 by the addition of 0.1% soil containing zeolite, diatomite, loess, kaoline and talc, excluding bentonite. The addition of 0.1% Tween 80, Triton X-100 and PEG 200 also decreased the pellet size, but SDS completely inhibited the fungal growth.

인산가용화균 Aspergillus sp. PS-104를 생물비료화하기 위하여 이 균주의 액침배양 시 mycelial pellet 형성을 억제하는 배양조건(배지 종류, 초기접종량)과 배지 첨가물(점토광물, 계면활성제, PEG 200)의 종류에 대하여 조사하였다. 그 결과 이 균주는 배지 종류를 달리하여 배양했을 때 SDB=YPD>PDB 순으로 pellet 크기가 감소하였다. 또한 이 균주는 $1{\times}10^{3}{\sim}1{\times}10^{7}$ conidia/ml 범위의 초기접종농도에서는 농도가 높을수록 pellet의 크기가 감소하였다. 또한 bentonite를 제외한 점토광물인 zeolite, diatomite, 황토, kaoline과 talc를 0.1% 농도로 배지에 첨가하였을 경우 pellet 크기가 대조군에 비해서 1/6${\sim}$1/4로 감소하였다 계면활성제인 Tween 80과 Triton X-100 및 PEG 200을 0.1% 농도로 첨가하였을 경우 pellet의 크기가 감소하였고, SDS를 첨가한 경우에는 균의 성장이 완전히 저해되었다.

Keywords

References

  1. Paul, E. A., and Clark, F. E. (1989) Soil microbiology and biochemistry. Academic Press. New York
  2. Kucey, R. M. N. (1988) Effect of Penicillium bilaji on the solubility uptake of P and micronutrients from soil by wheat. Can. J. Soil Sci. 68, 261-270 https://doi.org/10.4141/cjss88-026
  3. Dubey, S. K., and Billore, S. D. (1992) Phosphate solubilizing microorganism (PSM) as inoculant and their role in augmenting crop productivity in India-a review. Crop Res. Hisar. 5, 11
  4. Tiwari, V. N., Pathak, A. N. and Lehri, L. K. (1993) Rock phosphate-superphosphate in wheat in relation to inoculation with phosphate solubilizing organism and organic waste. Ind. J. Agr. Res. 27, 137-145
  5. Agasimani, C. A. and Sreenivasa, M. N. (1994) Response of groundnut to phosphate solubilizing microorganisms. Groundnut News. 6, 5
  6. Illmer, P., Barbato, A. and Schinner, F. (1995) Solubilization of hardly-soluble AlPO4 with P-solubilizing microorganisms. Soil Biol. & Biochem. 27, 265-270 https://doi.org/10.1016/0038-0717(94)00205-F
  7. Sayer, J. A., Raggett, S. L. and Gadd, G. M. (1995) Solubilization of insoluble metal compounds by soil fungi: development of a screening method for solubilizing ability and metal tolerance. Mycological Res. 99, 987-993 https://doi.org/10.1016/S0953-7562(09)80762-4
  8. Illmer, P., and Schinner, F. (1995) Solubilization of inorganic calcium phosphates-solubilization mechanisms. Soil Biol. & Biochem. 27, 257-263 https://doi.org/10.1016/0038-0717(94)00190-C
  9. Varsha, N., T. Jugnu, T. and Patel, H. H. (1993) Solubilization of natural rock phosphates and pure insoluble inorganic phosphates by Aspergillus awamori. Ind. J. Exp. Biol. 31, 747- 749
  10. Varsha, N., T. Jugnu, T. and Patel, H. H. (1995) Mineral phosphate solubilization by Aspergillus aculeatus. Ind. J. Exp. Biol. 33, 91-93
  11. Choi, M. C., Chung, J. B., Sa, T. M., Lim, S. U. and Kang, S. C. (1997) Solubilization of insoluble phosphates by Penicillium sp. GL-101 isolated from soil. J. Korean Soc. Agric. Chem. Biotechnol. 40, 329-333
  12. Kim, H. O., Uo, Z. K. and Lee, S. C. (1984) Mycorrhizae distribution and rock phosphate dissolution by soil fungi in the citrus fields in Jeju-do. Cheju Natl. Univ. J. 17, 45-50
  13. Suh, J. S., Lee, S. K., Kim, K. S. and Seong, K. Y. (1995) Solubilization of insoluble phosphates by Pseudomonas putida, Penicillium sp. and Aspergillus niger isolated from Korean soils. J. Korean Soc. Soil Sci. Fert. 28, 278-286
  14. Byrne, G. S. and Ward, O. P. (1989) Effect of nutrition on pellet formation by Rhizopus arrhizus. Biotechnol. Bioeng. 33, 912-914 https://doi.org/10.1002/bit.260330715
  15. Adamek, L. (1963) Submerged cultivation of the fungus Metarhizium anisopliae (Metch.). Folia Microbiol. 10, 255-257 https://doi.org/10.1007/BF02875956
  16. Inch, J. M. M. and Trinci, A. P. J. (1987) Effects of water activity on growth and sporulation of Paecilomyces farinosus in liquid and solid media. J. Gen. Microbiol. 113, 247-252
  17. Humphreys, A. Matewele, M., P., Trinci, A. P. J. and Gillespie, A. T. (1989) Effects of water activity on morphology, growth and blastospore production of Metarhizium anisopliae, Beauveria bassiana and Paecilomyces farinosus in fed-batch culture. Mycol. Res. 92, 257-264 https://doi.org/10.1016/S0953-7562(89)80063-2
  18. Kleespies, R. G. and Zimmermann, G. (1992) Production of blastospores by three strains of Metarhizium anisopliae (Metch.) sorokin in submerged culture. Biocontrol Sci. and Technol. 2, 127-135 https://doi.org/10.1080/09583159209355226
  19. Kang, S. C., Lee, D. G., Ha, C. G. and Lee, T. G. (1999) Culture conditions and additives affecting to the mycelial pellet size of Penicillium sp. GL-101 in the submerged culture. J. Korean Soc. Agric. Chem. Biotechnol. 42, 188-192
  20. Metz, B. and Kossen, N. W. F. (1977) The growth of molds in the form of pellets. Biotechnol. Bioeng. 19, 781-799 https://doi.org/10.1002/bit.260190602
  21. Elmayergi, H. (1975) Mechanisms of pellet formation of Aspergillus niger with an additive. J. Ferment. Technol. 53, 722-729
  22. Takahashi, J. and Yamada, K. (1959) Studies on the effects of some physical conditions on the submerged mold culture. II. On the two types of pellet formation in the shaking culture. J. Agric. Chem. 33, 707-710