Effect of Chlorine Dioxide Treatment on Microbial Growth and Qualities of Fish Paste during Storage

이산화염소 처리가 어묵의 저장 중 미생물학적 변화 및 품질에 미치는 영향

  • Shin, Hee-Young (Department of Food Science & Technology, College of Agriculture & Life Sciences, Chungnam National University) ;
  • Lee, Yeon-Ju (Department of Food Science & Technology, College of Agriculture & Life Sciences, Chungnam National University) ;
  • Park, In-Young (Department of Food Science & Technology, College of Agriculture & Life Sciences, Chungnam National University) ;
  • Kim, Ju-Yeon (Department of Food Science & Technology, College of Agriculture & Life Sciences, Chungnam National University) ;
  • Oh, Su-Jin (Department of Food Science & Technology, College of Agriculture & Life Sciences, Chungnam National University) ;
  • Song, Kyung-Bin (Department of Food Science & Technology, College of Agriculture & Life Sciences, Chungnam National University)
  • 신희영 (충남대학교 식품공학과) ;
  • 이연주 (충남대학교 식품공학과) ;
  • 박인영 (충남대학교 식품공학과) ;
  • 김주연 (충남대학교 식품공학과) ;
  • 오수진 (충남대학교 식품공학과) ;
  • 송경빈 (충남대학교 식품공학과)
  • Published : 2007.03.31

Abstract

Effect of chlorine dioxide ($ClO_2$) treatment on the microbial and physicochemical changes of fish paste was investigated. Fish paste samples were treated with 5, 10, and 50 ppm of $ClO_2$ solution, respectively, After $ClO_2$ treatment, fish paste samples were individually packaged and stored at 4$^{\circ}C$. The initial microbial loads of samples were 3.8 log CFU/g in total bacterial count, and 2.5 log CFU/g in yeasts and molds. Microbial growth of fish paste during storage showed that populations of total bacteria, yeast and mold were significantly reduced by $ClO_2$ treatment. In particular, the treatment of 50 ppm $ClO_2$ decreased total bacterial count the most significantly among the $ClO_2$ treated fish pastes. The pH and VBN of fish paste decreased with increasing $ClO_2$ concentration. Thiobarbituric acid reacted substance (TBARS) values of treated fish paste increased during storage, regardless of $ClO_2$ concentration. This study showed that 50 ppm chloride dioxide was the optimum dose level to extend the shelf-life of fish paste.

어묵에 이산화염소 용액을 농도별로 처리하여 미생물에 대한 살균효과 및 품질에 관련된 이화학적 특성 변화를 조사하였다. 어묵의 저장 초기, 총 호기성균은 대조구 3.8log CFU/g, 50ppm 처리군은 2.81log CFU/g로 차이를 나타내었으며, 효모와 곰팡이 역시 대조구는 2.47log CFU/g, 50ppm 처리군 1.60 log CFU/g 으로 이산화염소 처리 시 미생물 감균 효과가 우수하였다. 저장 9일차 총 호기성균의 대조구와 5ppm은 각각 6.36log CFU/g, 6.11 log CFU/g로 부패 초기 현상을 보였으나 10, 50 ppm은 각각 5.91, 5.48log CFU/g로 위생학적 안전함을 보였다. 효모와 곰팡이 역시 저장 12일에 대조구와 5ppm은 각각 6.42, 6.01 log CFU/g로 부패 초기 단계에 근접하였으나 10, 50ppm은 각각 5.30, 5.03 log CFU/g로 이산화염소 처리농도에 따라 미생물이 감소하는 경향을 보였다. pH는 저장기간이 증가할수록 감소하였으며 이산화염소의 처리 농가가 높을수록 더 낮은 pH를 나타내었다. VBN 값은 저장기간이 증가할수록 증가하였으나 저장 12일차 대조구가 18.1mg%를 나타내었고, 50 ppm에서는 9.3mg%를 나타내었다. TBARS 값은 저장기간이 증가함에 따라 증가하였는데, 이산화염소 용액의 농도에 따른 큰 차이는 보이지 않았다. 관능검사를 실시한 결과 이산화염소 용액의 농도가 증가할수록 평가 점수가 높음을 확인할 수 있었다. 따라서 이산화염소 용액의 처리가 어묵의 미생물학적 안전성을 증대시킴으로써 유통기한 연장에 도움이 된다고 판단된다.

Keywords

References

  1. Park, Y. K., Kim, H. H. and Kim, M. H. (2004) Quality characteristics of fried fish paste added with ethanol extract of onion. J. Korean Soc. Food Sci. Nutr. 33, 1049-1055 https://doi.org/10.3746/jkfn.2004.33.6.1049
  2. Cho, H. O., Kwon, J. H., Byun, M. W. and Lee, M. K. (1985) Preservation of fried fish meat paste by irradiation. Korean J. Food Sci. Technol. 17, 474-481
  3. Kim, J. S., Cho, M. L. and Heu, M. S. (2003) Quality improvement of heart-induced surimi gel using calcium powder of cuttle, Sepia esculenta bone treated with acetic acid. J. Kor. Fish. Soc. 36, 198-203
  4. Kim, S. K., Ma, Y. H., Gu, K. J., Lee, Y. J., Kim, E. J. and Song, K. B. (2005) Effect of chlorine dioxide treatment on microbial safety and quality of saury during storage. J. Korean Soc. Food Sci. Nutr. 34, 1258-1264 https://doi.org/10.3746/jkfn.2005.34.8.1258
  5. Cho, S. H., Joo, I. S., Soo, I. W. and Kim, Z. W. (1991) Preservative effect of grapefruit seed extract on fish meat product. Korean J. Food Hygiene. 6, 67-72
  6. Cho, H. T., Chang, D. S., Lee, W. D., Jeong, E. T. and Lee, E. W. (1998) Utilization of chitosan hydrolysate as a natural food preservative for fish meat paste products. Korean J. Food Sci. Technol. 30, 817-822
  7. Youm, H. J., Ko, J. K., Kim, M. R., Cho, Y. S., Chun, H. K. and Song, K. B. (2005) Effect of aqueous chlorine dioxide and citric acid treatment on microbial safety and quality control of minimally processed and refrigerated (MPR) salad. Korean J. Sci. Food Technol. 37, 129-133
  8. Moore, G. S., Calabrese, E. J., DiNardi, S. R. and Tuthill, R. W. (1978) Potential health effect of chlorine dioxide as a disinfectant in potable water supplies. Med. Hypotheses 4, 481- 496 https://doi.org/10.1016/0306-9877(78)90017-8
  9. Singh, N., Sing, R. K., Bhunia, A. K. and Stroshine, R. L. (2002) Efficacy of chlorine dioxide, ozone, and thyme essential oil or a sequential washing in killing Escherichia coli O157:H7 on lettuce and baby carrots. Lebensm.-Wiss. u.-Technol. 36, 720-729
  10. Kim, J. M. (2001) Use of chlorine dioxide as a biocide in the food industry. Food Ind. Nutr. 6, 33-39
  11. Kraybill, H. F. (1978) Origin, classification and distribution of chemicals in drinking water with an assessment of their carcinogenic potential. In Water chlorination, environmental impact and health effects, Jolly, R. L. (eds.), Ann Arbor Scientific Publishers, Inc., Ann Arbor, Mich, pp. 211-228
  12. Jimenez-Villarreal, J. R., Pohlman, F. W., Johnson, Z. B., Brown Jr, A. H. and Baublits, R. T. (2003) Effect of chlorine dioxide, cetylpyridinium chlorine, lactic acid and trisodium phosphate on physical and sensory properties of ground beef. Meat Sci. 65, 1055-1062 https://doi.org/10.1016/S0309-1740(02)00320-0
  13. Andrews, L. S., Key, A. M., Martin, R. L., Grodner, R. and Park, D. L. (2002) Chlorine dioxide wash of shrimp and crawfish an alternative to aqueous chlorine. Food Microbiol. 19, 261-267 https://doi.org/10.1006/fmic.2002.0493
  14. Tsai, L.S., Wilson, R. and Randall, V. (1997) Mutagenicity of poultry chiller water treated with either chlorine dioxide or chlorine. J. Agric. Food Chem. 45, 2267-2272 https://doi.org/10.1021/jf960926j
  15. Du, J., Han, Y. and Linton, R. H. (2003) Efficacy of chlorine dioxide gas in reducing Escherichia coli O157:H7 on apple surfaces. Food Microbiol. 20, 583-591 https://doi.org/10.1016/S0740-0020(02)00129-6
  16. Hanm Y., Linton, R. H., Nielsen, S. S. and Nelson, P. E. (2000) Inactivation of Escherichia coli O157:H7 on surface-uninjured and injured green pepper (Capsicum annuum L.) by chlorine dioxide gas as demonstrated by confocal laser scanning microscopy. Food Microbiol. 17, 643-655 https://doi.org/10.1006/fmic.2000.0357
  17. APHA. (1995) Standard methods for the examination of water and wastewater. 19th ed. Method 4-54. American Public Health Association, Washington DC, USA
  18. Korea Food and Drug Administration. (2002) In Food code. South Korea. pp. 222-223
  19. Ahn, D. U., Olsin, D. G., Jo, C., Chen, X., Wu, C. and Lee, J. I. (1998) Effect of muscle type, packaging, and irradiation on lipid oxidation, volatile production, color in raw pork patties. Meat Sci. 49, 27-39 https://doi.org/10.1016/S0309-1740(97)00101-0
  20. Zhu, M. J., Mendonca, A. and Ahn, D. U. (2004) Temperature abuse affects the quality of irradiation pork loin. Meat Sci. 67, 673-649
  21. SAS (2001) SAS User's Guide. Statistical Analysis Systems Institute Inc., Cary, NC, USA
  22. Nonaka, J., Hashimoto, H., Takabashi, H. and Suyama, M. (1971) Freshness determination method of fish and shellfish. In seafood science. Kouseishow Kouseigaku, Tokyo, pp. 72-77
  23. Kraybill, H. F. (1978) Origin, classification and distribution of chemicals in drinking water with an assessment of their carcinogenic potential. In: Water Chlorination. Jplly, R. L. (ed.), pp. 211-228. Ann Arbor Science, Ann Arbor, MI, USA
  24. Kim, J. M., Du, W. X., Steven Otwel, L. W., Marshall, M. R. and Wei, C. I. (1998) Nutrients in salmon and red grouper fillets as affected by chlorine dioxide (ClO2) treatment. J. Food Sci. 36, 629-633 https://doi.org/10.1111/j.1365-2621.1971.tb15147.x
  25. Jimenez-Villarreal, J. R., Pohlman, F. W., Johnson, Z. B. and Brown Jr, A. H. and Baublits, R. T. (2003) The impact of single antimicrobial intervention treatment with cetylpyridinium chloride, trisodium phosphate, chlorine dioxide or lactic acid on ground beef lipid, instrumental color and sensory characteristics. Meat Sci. 65, 977-984 https://doi.org/10.1016/S0309-1740(02)00315-7
  26. Kim, I. S., Min, J. S., Shin, D. K., Lee, J. I. and Lee, M. (1998) Physicochemical and sensory characteristic of domestic vacuum package pork loins for export during chilled storage. Korean J. Anim. Sci. 40, 401-412
  27. Shin, H. Y., Ku, K. U., Park, S. K. and Song, K. B. (2006) Use of freshness indicator for determination of freshness quality change of tofu during storage. J. Korean Soc. Appl. Biol. Chem. 49, 158-162
  28. Malle, P. and Poumeyrol, M. (1989) A new chemical criterion for the quality control of fish. Trimethylamine/total volatile basic nitrogen. J. Food Protect 52, 419-423 https://doi.org/10.4315/0362-028X-52.6.419
  29. Brewer, M. S., Ikins, W. G. and Harbers C. A. (1992) TBA values, sensory characteristics and volatiles in ground pork during long-term frozen storage: Effects of packaging. J. Food Sci. 57, 558-563 https://doi.org/10.1111/j.1365-2621.1992.tb08042.x
  30. Brewer, M. S. and Harbers, C. A. Z. (1993) Effect of packaging on physical and sensory characteristic of ground pork in long-term frozen storage. J. Food Sci. 56, 627-631
  31. Kim, J. M., Du, W. X., Steven Otwel, L. W., Marshall, M. R. and Wei, C. I. (1998) Nutrients in salmon and red grouper fillets as affected by chlorine dioxide ($ClO_2$) treatment. J. Food Sci. 36, 629-633 https://doi.org/10.1111/j.1365-2621.1971.tb15147.x
  32. Park, I. K., Kim, S. Y. and Kim, S. D. (1994) Storage of soybean curd prepared with ozone treated soybean. J. East Asian Soc. Dietary Life 4, 69-74