The Optimized Integration of Single-baseline GPS Solutions for Network-based Kinematic Positioning

네트워크 기반 키너매틱 위치결정을 위한 단일기선 GPS해의 최적 결합

  • 최윤수 (서울시립대학교 공간정보공학과) ;
  • 배태석 (오하이오 주립대학교) ;
  • 이종기 (오하이오 주립대학교) ;
  • 권재현 (서울시립대학교 공간정보공학과)
  • Published : 2007.06.30

Abstract

For several years, although the demand of high accuracy kinematic positing using multiple bases has been increased, most of the commercial GPS processing softwares can provide the single-baseline solutions only. Thus, we studied the methods to improve the accuracy of the kinematic positioning using the network configuration based on the several single-baseline solutions. As discussed in this study, the positioning accuracy as well as the network stability is improved by introducing the geodetic network adjustment theories into the kinematic positioning application. Three different methods to remove the rank-deficiency, RLESS, BLIMPBE and SCLESS, are analyzed in this study. The 3D RMS error has been improved from 3.5cm(max) to 2.1cm using the network-based kinematic positioning, and it is desired to choose BLIMPBE and SCLESS depending on the accuracy of the base stations.

다수의 고정수신기를 이용하여 이동수신기의 위치를 정확히 측정하고자 하는 필요성은 계속적으로 대두되고 있었으나, 현재 사용되고 있는 대부분의 상용 소프트웨어에서는 단일기선에 대한 GPS 결과만을 제공하고 있다. 따라서 본 논문에서는 다수의 단일기선 결과를 이용하여 네트워크를 구성함으로써 이동수신기의 위치측정 정확도를 향상시키기 위한 방안을 연구하였다. 이를 위해 기존의 측지 망 조정 이론을 도입하여 이동수신기의 위치결정 분야에 적용함으로써 위치정확도 향상 뿐만 아니라 전체적인 네트워크의 안정에도 기여할 수 있음을 알 수 있었다. 또한 측지망의 계수부족(Rank-deficiency)을 제거하기 위해서 하나의 고정수신기의 위치를 고정시키는 방법(RLESS), 이동수신기의 바이어스(Bias)를 최소화하는 방법(BLIMPBE), 그리고 고정수신기의 위치에 확률적 제약 조건을 주는 방법(SCLESS)에 대해서 비교 분석하였다. 네트워크 기반의 위치결정을 통해서 3차원 평균제곱근오차(RMSE)는 최대 3.5cm에서 2.1cm 수준으로 향상되었고, 기준점의 위치정확도에 따라 BLIMPBE 및 SCLESS 방법을 적절히 적용하는 것이 바람직할 것으로 판단된다.

Keywords

References

  1. Brzezinska, D., Kashani, I. and Wielgosz, P. (2004), Analysis of the Network Geometry and Station Separation for Network-Based RTK, ION National Technical Meeting, San Diego, CA
  2. Dai, L., Han, S., Wang, J. and Rizos, C. (2004), Comparison of interpolation techniques in network-based GPS techniques. Navigation, 50(4), 277-293
  3. Fotopoulos, G. and Cannon, M.E. (2001), An overview of multireference station methods for em-level positioning, GPS Solutions, 4(3), 1-10
  4. Gao, Y., Li, Z. and McLellan, J.F. (1997), Carrier phase based regional area differential GPS for decimeter-level positioning and navigation, 10th Int. Tech. Meeting of the Satellite Div. of the Us. Institute of Navigation, Kansas City, Missouri, 16-19 September, 1305-1313
  5. Gao, Y. and Li, Z. (1998), Ionosphere effect and modeling for regional area differential GPS network, 11th Int. Tech. Meeting of the Satellite Div. of the Us. Institute of Navigation, Nashville, Tennessee, 15-18 September, 91- 97
  6. Han, S. and Rizos, C. (1996), GPS network design and error mitigation for real-time continuous array monitoring systems, Proceedings of 9th int. Tech. Meeting of the Satellite Division of the U.S. Inst. Of Navigation, Kansas City, Missouri, 17-20 September
  7. Marel, H. van der (1998), Virtual GPS reference stations in the Netherlands, 11th Int. Tech. Meeting of the Satellite Div. of the Us. Institute of Navigation, Nashville, Tennessee, 15-18 September, 49-58
  8. Raquet, J. (1997), Multiple user network carrier-phase ambiguity resolution, Int. Symp. on Kinematic Systems in Geodesy, Geomatics and Navigation (KIS-97), Banff, Canada, 3-6 June, 45-55
  9. Schaffrin, B. and Iz, H.B. (2002), BLIMPBE and its Geodetic Applications. In: Vistas for Geodesy in the New Millennium, Adam and Schwarz (eds.), Springer, Berlin, pp. 377-381
  10. Snow, K. (2002), Applications of Parameter Estimation and Hypothesis Testing to GPS Network Adjustments, Report No. 465, Dept. of Civil and Environmental Engineering and Geodetic Science, The Ohio State University, Columbus, Ohio
  11. Wanninger, L. (1995), Improved ambiguity resolution by regional differential modeling of the ionosphere, 8th Int. Tech. Meeting of the Satellite Div. of the U.S. Institute of Navigation, Palm Springs, California, 12-15 September, 55-62
  12. Wtibbena, G., Bagge, A., Seeber, G., Boder, V. and Hankemeier, P. (1996), Reducing distance dependent errors for real-time precise DGPS applications by establishing reference station networks, 9th Int. Tech. Meeting of the Satellite Div. of the U.S. Institute of Navigation, Kansas City, Missouri, 17-20 September, 1845-1852