Design and Verification of IEEE 802.11a Baseband Processor

IEEE 802.11a 기저대역 프로세서의 설계 및 검증

  • Kim, Sang-In (Dept. of Computer and Communication Engineering and Research Institute for Computer and Information Communication, Chungbuk National University) ;
  • Kim, Su-Young (Dept. of Computer and Communication Engineering and Research Institute for Computer and Information Communication, Chungbuk National University) ;
  • Seo, Jung-Hyun (Dept. of Computer and Communication Engineering and Research Institute for Computer and Information Communication, Chungbuk National University) ;
  • Yun, Tae-Il (Dept. of Computer and Communication Engineering and Research Institute for Computer and Information Communication, Chungbuk National University) ;
  • Lee, Je-Hoon (CBNU BK21 Chungbuk Information Technology Center, Chungbuk National University) ;
  • Cho, Kyoung-Rok (Dept. of Computer and Communication Engineering and Research Institute for Computer and Information Communication, Chungbuk National University)
  • 김상인 (충북대학교 정보통신공학과 컴퓨터정보통신연구소) ;
  • 김수영 (충북대학교 정보통신공학과 컴퓨터정보통신연구소) ;
  • 서정현 (충북대학교 정보통신공학과 컴퓨터정보통신연구소) ;
  • 윤태일 (충북대학교 정보통신공학과 컴퓨터정보통신연구소) ;
  • 이제훈 (충북대학교 BK21) ;
  • 조경록 (충북대학교 정보통신공학과 컴퓨터정보통신연구소)
  • Published : 2007.06.25

Abstract

This paper shows an implementation of the baseband processor compliant with the IEEE 802.11a standard. Some innovative techniques are proposed to fulfill the mandatory requirements of the standard. For verification and analysis of this design, we use a Platform-based SoC (system on chip) environment. The entire system consists of test-board for the baseband processor chip and the SoC platform for implementing MAC (medium access control).

본 논문에서는 IEEE 802.11a 표준안에 적합한 기저대역 프로세서를 설계하였다. 또한 표준안에서 제시된 기본적인 기술이외에 필요한 기능을 충족시키기 위한 새로운 알고리즘이 제시되었다. 설계된 기저대역 프로세서의 구현 및 검증을 위해 SoC 플랫폼을 이용하였다. 플랫폼 기반의 IEEE 802.11a WLAN을 설계하기 위한 환경은 기저대역 프로세서 칩을 테스트하기 위한 테스트 보드와 MAC을 이행할 SoC 플랫폼으로 구성되어 있다.

Keywords

References

  1. R. Van Nee and R. Prasad, 'OFDM for Wireless Multimedia Communication,' Artech House, 2000
  2. IEEE, 'Part II: Wireless LAN Medium Control and Physical Layer specification: High-speed Physical Layer in 5GHz Band,' IEEE standard 802.11a, Dec. 1999
  3. J. J. van de Beek, M. Sandell, and P. O. Borjesson, 'ML estimation of time and frequency offset in OFDM systems,' IEEE Transaction. on Communication Theory, Vol. 45, No. 7, pp. 1800-1805, July 1997
  4. T. Pollet, M. van Bladel and M. Moeneclaey, 'BER sensitivity of OFDM systems to carrier frequency offset and Wiener phase noise,' IEEE Trans. on Communications, Vol. 43, no. 234, pp. 191-193, Feb/Mar/Apr 1995 https://doi.org/10.1109/26.380034
  5. John P. Hayes, 'Computer Architecture and Organization,' McGRAW-HILL, 1998
  6. Waser. S and M. J. Flynn, 'Introduction to Arithmetic for Digital System Designers,' Holt. Rinehart. & Winston, 1982
  7. S. M. Ross, 'Introduction to Probability and Statistics for Engineers and Scientists,' Academic, 2000
  8. J. Rinne, 'An equalization method using preliminary decision for orthogonal frequency division multiplexing systems in channels with frequency selective fading,' IEEE Conf. Vehicular Technology, Vol. 3, No. 7, pp. 885-888, July 1988
  9. M. A. Herro, L. Hu and J. M. Nowack, 'Bit error probability calculations for convolusional codes with short constraint lengths on very noisy cahnnels' IEEE Transactions on Communication Theory, Vol. 36, No. 7, pp. 885-888, July 1988 https://doi.org/10.1109/26.2819
  10. G. Zou, H. Weinrichter, 'Bounded metric Viterbi decoding of trellis coded modulation in presence of intersymbol interference,' IEEE Electronic Letters, Vol. 24, No. 15, pp. 946-947, July 1988 https://doi.org/10.1049/el:19880644