Relationship Between Genome Similarity and DNA-DNA Hybridization Among Closely Related Bacteria

  • Kang, Cheol-Hee (Department of Microbiology and Biotechnology Research Institute, Chungbuk National University) ;
  • Nam, Young-Do (Biological Resources Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB)) ;
  • Chung, Won-Hyong (National Genome Information Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB)) ;
  • Quan, Zhe-Xue (Biological Resources Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB)) ;
  • Park, Yong-Ha (Biological Resources Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB)) ;
  • Park, Soo-Je (Department of Microbiology and Biotechnology Research Institute, Chungbuk National University) ;
  • Desmone, Racheal (Department of Microbiology, Miami University) ;
  • Wan, Xiu-Feng (Department of Microbiology, Miami University) ;
  • Rhee, Sung-Keun (Department of Microbiology and Biotechnology Research Institute, Chungbuk National University)
  • Published : 2007.06.30

Abstract

DNA-DNA hybridization has been established as an important technology in bacterial species taxonomy and phylogenetic analysis. In this study, we analyzed how the efficiency with which the genomic DNA from one species hybridizes to the genomic DNA of another species (DNA-DNA hybridization) in microarray analysis relates to the similarity between two genomes. We found that the predicted DNA-DNA hybridization based on genome sequence similarity correlated well with the experimentally determined microarray hybridization. Between closely related strains, significant numbers of highly divergent genes (>55% identity) and/or the accumulation of mismatches between conserved genes lowered the DNA-DNA hybridization signal, and this reduced the hybridization signals to below 70% for even bacterial strains with over 97% 16S rRNA gene identity. In addition, our results also suggest that a DNA-DNA hybridization signal intensity of over 40% indicates that two genomes at least shared 30% conserved genes (>60% gene identity). This study may expand our knowledge of DNA-DNA hybridization based on genomic sequence similarity comparison and further provide insights for bacterial phylogeny analyses.

Keywords

References

  1. Bae, J. W., S. K. Rhee, J. R. Park, W. H. Chung, Y. D. Nam, I. Lee, H. Kim, and Y. H. Park. 2005. Development and evaluation of genome-probing microarrays for monitoring lactic acid bacteria. Appl. Environ. Microbiol. 71: 8825- 8835 https://doi.org/10.1128/AEM.71.12.8825-8835.2005
  2. Brenner, D. J., G. R. Fanning, F. J. Skerman, and S. Falkow. 1972. Polynucleotide sequence divergence among strains of Escherichia coli and closely related organisms. J. Bacteriol. 3: 953-965
  3. Crosa, J. H., D. J. Brenner, W. H. Ewing, and S. Falkow. 1973. Molecular relationships among the Salmonelleae. J. Bacteriol. 115: 307-315
  4. Dorris, D. R., R. Ramakrishnan, D. Trakas, F. Dudzik, R. Belval, C. Zhao, A. Nguyen, M. Domanus, and A. Mazumder. 2002. A highly reproducible, linear, and automated sample preparation method for DNA microarrays. Genome Res. 12: 976-984 https://doi.org/10.1101/gr.227402
  5. Fukushima, M., K. Kakinuma, H. Hayashi, H. Nagai, K. Ito, and R. Kawaguchi. 2003. Detection and identification of Mycobacterium species isolates by DNA microarray. J. Clin. Microbiol. 41: 2605-2615 https://doi.org/10.1128/JCM.41.6.2605-2615.2003
  6. Girke, T., J. Todd, S. Ruuska, J. White, C. Benning, and J. Ohlrogge. 2000. Microarray analysis of developing Arabidopsis seeds. Plant Physiol. 124: 1570-1581 https://doi.org/10.1104/pp.124.4.1570
  7. Gogarten, J. P. and J. P. Townsend. 2005. Horizontal gene transfer, genome innovation and evolution. Nat. Rev. Microbiol. 3: 679-687 https://doi.org/10.1038/nrmicro1204
  8. Grimont, P. A. D., M. Y. Popoff, F. Grimont, C. Coynault, and M. Lemelin. 1980. Reproducibility and correlation study of three deoxyribonucleic acid hybridization procedures. Curr. Microbiol. 4: 325-330 https://doi.org/10.1007/BF02605371
  9. Hwang, K. O. and J. C. Cho. 2006. Evaluation of DNA microarray approach for identifying strain-specific genes. J. Microbiol. Biotechnol. 16:1773-1777
  10. Kim, B. S., S. J. Kang, S. B. Lee, W. Hwang, and K. S. Kim. 2005. Simple method to correct gene-specific dye bias from partial dye swap information of a DNA microarray experiment. J. Microbiol. Biotechnol. 15: 1377-1383
  11. Kim, I. S., H. S. Yun, H. Shimisu, E. Kitagawa, H. Iwahashi, and I. Jin. 2005. Elucidation of copper and asparagine transport systems in Saccharomyces cerevisiae KNU5377 through genome-wide transcriptional analysis. J. Microbiol. Biotechnol. 15: 1240-1249
  12. Konstantinidis, K. T. and J. M. Tiedje. 2005. Towards a genome-based taxonomy for prokaryotes. J. Bacteriol. 187: 6258-6264 https://doi.org/10.1128/JB.187.18.6258-6264.2005
  13. Loy, A., A. Lehner, N. Lee, J. Adamczyk, H. Meier, J. Ernst, K. H. Schleifer, and M. Wagner. 2002. Oligonucleotide microarray for 16S rRNA gene-based detection of all recognized lineages of sulfate-reducing prokaryotes in the environment. Appl. Environ. Microbiol. 68: 5064-5081 https://doi.org/10.1128/AEM.68.10.5064-5081.2002
  14. Maynard, S. J. 1995. Do Bacteria Have Population Genetics? Cambridge University Press, Cambridge
  15. Oh, M. K., M. J. Cha, S. G. Lee, L. Rohlin, and J. C. Liao. 2006. Dynamic gene expression profiling of Escherichia coli in carbon source transition from glucose to acetate. J. Microbiol. Biotechnol. 14: 543-549
  16. Paster, B. J. and F. E. Dewhirst. 1988. Phylogeny of campylobacters, wolinellas, Bacteroides gracilis, and Bacteroides ureolyticus by 16S ribosomal ribonucleic acid sequencing. Int. J. Syst. Bacteriol. 38: 56-62 https://doi.org/10.1099/00207713-38-1-56
  17. Qi, J., B. Wang, and B. I. Hao. 2004. Whole proteome prokaryote phylogeny without sequence alignment: A Kstring composition approach. J. Mol. Evol. 58: 1-11 https://doi.org/10.1007/s00239-003-2493-7
  18. Rhee, S. K., X. Liu, L. Wu, S. C. Chong, X. Wan, and J. Zhou. 2004. Detection of genes involved in biodegradation and biotransformation in microbial communities by using 50-mer oligonucleotide microarrays. Appl. Environ. Microbiol. 70: 4303-4317 https://doi.org/10.1128/AEM.70.7.4303-4317.2004
  19. Rocap, G., F. W. Larimer, J. Lamerdin, S. Malfatti, P. Chain, N. A. Ahlgren, A. Arellano, M. Coleman, L. Hauser, W. R. Hess, Z. I. Johnson, M. Land, D. Lindell, A. F. Post, W. Regala, M. Shah, S. L. Shaw, C. Steglich, M. B. Sullivan, C. S. Ting, A. Tolonen, E. A. Webb, E. R. Zinser, and S. W. Chisholm. 2003. Genome divergence in two Prochlorococcus ecotypes reflects oceanic niche differentiation. Nature 424: 1042-1047 https://doi.org/10.1038/nature01947
  20. Roop, R. M., R. M. Smibert, J. L. Johnson, and N. R. Krieg. 1984. Differential characteristics of catalase-positive campylobacters correlated with DNA homology groups. Can. J. Microbiol. 30: 938-951 https://doi.org/10.1139/m84-147
  21. Roop, R. M., R. M. Smibert, J. L. Johnson, and N. R. Krieg. 1994. DNA homology studies of the catalase-negative campylobacters and Campylobacter fecalis, an emended description of Campylobacter sputorum, and proposal of the neotype strain of Campylobacter sputorum. Can. J. Microbiol. 31: 846-849
  22. Rossello-Mora, R. and R. Amann. 2001. The species concept for prokaryotes. FEMS Microbiol. Rev. 25: 39-67 https://doi.org/10.1111/j.1574-6976.2001.tb00571.x
  23. Somerville, H. J. and M. L. Jones. 1972. DNA competition studies within the Bacillus cereus group of bacilli. J. Gen. Microbiol. 73: 257-265 https://doi.org/10.1099/00221287-73-2-257
  24. Stackebrandt, E. and B. M. Goebel. 1994. Taxonomic note: A place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int. J. Syst. Bacteriol. 44: 846-849 https://doi.org/10.1099/00207713-44-4-846
  25. Taroncher-Oldenburg, G., E. M. Griner, C. A. Francis, and B. B. Ward. 2003. Oligonucleotide microarray for the study of functional gene diversity in the nitrogen cycle in the environment. Appl. Environ. Microbiol. 69: 1159-1171 https://doi.org/10.1128/AEM.69.2.1159-1171.2003
  26. Ursing, J., M. Walder, and K. Sandstedt. 1983. Base composition and sequence homology of deoxyribonucleic acid of thermotolerant Campylobacter from human and animal sources. Curr. Microbiol. 8: 307-310 https://doi.org/10.1007/BF01577733
  27. Vandamme, P., E. Falsen, R. Rossau, B. Hoste, P. Segers, R. Tytgat, and J. D. Ley. 1991. Revision of Campylobacter, Helicobacter, and Wolinella taxonomy: Emendation of generic descriptions and proposal of Arcobacter gen. nov. Int. J. Syst. Bacteriol. 41: 88-103 https://doi.org/10.1099/00207713-41-1-88
  28. Wayne, L.G., D. J. Brenner, R. R. Colwell, P. A. D. Grimont, O. Kandler, M. I. Krichevsky, L. H. Moore, W. E. C. Moore, R. G. E. Murray, E. Stackebrandt, M. P. Starr, and H. G. Trüper. 1987. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int. J. Syst. Bacteriol. 37: 463-464 https://doi.org/10.1099/00207713-37-4-463
  29. Wu, L., D. K. Thompson, G. Li, R. A. Hurt, J. M. Tiedje, and J. Zhou. 2001. Development and evaluation of functional gene arrays for detection of selected genes in the environment. Appl. Environ. Microbiol. 67: 5780-5790 https://doi.org/10.1128/AEM.67.12.5780-5790.2001
  30. Wu, L., D. K. Thompson, X. Liu, M. W. Fields, C. E. Bagwell, J. M. Tiedje, and J. Zhou. 2004. Development and evaluation of microarray-based whole-genome hybridization for detection of microorganisms within the context of environmental applications. Environ. Sci. Technol. 38: 6775- 6782 https://doi.org/10.1021/es049508i
  31. Wu, X., X. F. Wan, G. Wu, D. Xu, and G. Lin. 2006. Whole genome phylogeny via complete composition vectors. Int. J. Bioinform. Res. Applic. 2: 219-248 https://doi.org/10.1504/IJBRA.2006.010602
  32. Xu, W., S. Bak, A. Decker, S. M. Paquette, R. Feyereisen, and D. W. Galbraith. 2001. Microarray-based analysis of gene expression in very large gene families: The cytochrome P450 gene superfamily of Arabidopsis thaliana. Gene 272: 61-74 https://doi.org/10.1016/S0378-1119(01)00516-9
  33. Zhang, L., U. Srinivasan, C. F. Marrs, D. Ghosh, J. R. Gilsdorf, and B. Foxman. 2004. Library on a slide for bacterial comparative genomics. BMC Microbiol. 4: 12 https://doi.org/10.1186/1471-2180-4-12
  34. Zhou, J. and D. K. Thompson. 2002. Challenges in applying microarrays to environmental studies. Curr. Opin. Biotechnol. 13: 204-207 https://doi.org/10.1016/S0958-1669(02)00319-1