참고문헌
- Ahn, T., J. Ka, G. Lee, and H. Song. 2007. Microcosm study for revegetation of barren land with wild plants by some plant growth-promoting rhizobacteria. J. Microbiol. Biotechnol. 17: 52-57
- Ayyadurai, N., P. Ravindra Naik, M. Sreehari Rao, R. Sunish Kumar, S. K. Samrat, M. Manohar, and N. Sakthivel. 2006. Isolation and characterization of a novel banana rhizosphere bacterium as fungal antagonist and microbial adjuvant in micropropagation of banana. J. Appl. Microbiol. 100: 926- 937 https://doi.org/10.1111/j.1365-2672.2006.02863.x
- Bakker, W. A. and B. Schippers. 1987. Microbial cyanide production in the rhizosphere in relation to potato yield reduction and Pseudomonas sp. mediated plant growth stimulation. Soil Biol. Biochem. 19: 451-457 https://doi.org/10.1016/0038-0717(87)90037-X
- Cattelan, A. J., P. G. Hartel, and F. F. Fuhrmann. 1999. Screening for plant growth promoting rhizobacteria to promote early soybean growth. Soil Sci. Soc. Am. J. 63: 1670-1680 https://doi.org/10.2136/sssaj1999.6361670x
- de Souza, J. T. and J. M. Raaijmakers. 2003. Polymorphisms within the PrnD and PltC genes from pyrrolnitrin and pyoluteorin-producing Pseudomonas and Burkholderia spp. FEMS Microbiol. Ecol. 43: 21-34
- Ellis, R. J., I. P. Thompson, and M. J. Bailey. 1999. Temporal fluctuations in the pseudomonad population associated with sugar beet leaves. FEMS Microbiol. Ecol. 28: 345-356 https://doi.org/10.1111/j.1574-6941.1999.tb00589.x
- Ellis, R. J., T. M. Timms-Wilson, and M. J. Bailey. 2000. Identification of conserved traits in fluorescent pseudomonads with antifungal activity. Environ. Microbiol. 2: 274-284 https://doi.org/10.1046/j.1462-2920.2000.00102.x
- Emmert, E. A. B. and J. Handelsman. 1999. Biocontrol of plant disease: A (Gram) positive perspective. FEMS Microbiol. Lett. 171: 1-9 https://doi.org/10.1111/j.1574-6968.1999.tb13405.x
- Higgins, D. G., A. T. Bleashy, and R. Fuchs. 1992. Clustal V: Improved software for multiple sequence alignment. Comput. Appl. Biosci. 8: 189-191
- Hu, H. B., Y. Q. Xu, F. Chen, X. H. Zhang, and B. K. Hur. 2005. Isolation and characterization of a new fluorescent Pseudomonas strain that produces both phenazine-1- carboxylic acid and pyoluteorin. J. Microbiol. Biotechnol. 15: 86-90
- Keel, C., U. Schnider, M. Maurhofer, C. Voisard, J. Laville, U. Burger, P. Wirthner, D. Haas, and G. Defago. 1992. Suppression of root diseases by Pseudomonas fluorescens CHA0: Importance of the bacterial secondary metabolite 2,4-diacetylphloroglucinol. Mol. Plant-Microbe Inter. 5: 4- 13 https://doi.org/10.1094/MPMI-5-004
- Kimura, M. 1980. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J. Mol. Evol. 16: 111-120 https://doi.org/10.1007/BF01731581
- King, E. O., M. K. Ward, and D. E. Raney. 1954. Two simple media for demonstration of pyocyanin and fluorescein. J. Lab. Clin. Med. 44: 301-307
- Kumar, S., K. Tamura, I. B. Jakobsen, and M. Nei. 2001. MEGA2: Molecular evolutionary genetics analysis software. Bioinformatics 17: 1244-1245 https://doi.org/10.1093/bioinformatics/17.12.1244
- Mew, T. W. and A. M. Rosales. 1986. Bacterization of rice plants for control of sheath blight caused by Rhizoctonia solani. Phytopathology 76: 1260-1264 https://doi.org/10.1094/Phyto-76-1260
- O'Sullivan, D. J. and F. O'Gara. 1992. Traits of fluorescent Pseudomonas spp. involved in suppression of plant root pathogens. Microbiol. Rev. 56: 662-676
- Ravindra Naik, P. and N. Sakthivel. 2006. Functional characterization of a novel hydrocarbonoclastic Pseudomonas sp. strain PUP6 with plant-growth-promoting traits and antifungal potential. Res. Microbiol. 157: 538-546 https://doi.org/10.1016/j.resmic.2005.11.009
- Renwick, A., R. Campbell, and S. Coe. 1991. Assessment of in vivo screening systems for potential biocontrol agents of Gaeumannomyces graminis. Plant Pathol. 40: 524-532 https://doi.org/10.1111/j.1365-3059.1991.tb02415.x
- Saitou, N. and M. Nei. 1987. The neighbor-joining method: A new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4: 406-425
- Sakthivel, N. and S. S. Gnanamanickam. 1987. Evaluation of Pseudomonas fluorescens for suppression of sheath rot disease and for enhancement of grain yields in rice (Oryza sativa L.). Appl. Environ. Microbiol. 53: 2056-2059
- Sakthivel, N. and S. S. Gnanamanickam. 1989. Incidence of different biovars of Pseudomonas fluorescens in flooded rice rhizospheres in India. Agric. Ecosyst. Environ. 25: 287-298 https://doi.org/10.1016/0167-8809(89)90126-6
- Sands, D. C. and A. D. Rovira. 1971. Pseudomonas fluorescens biotype G, the dominant fluorescent pseudomonads in south Australian soils and wheat rhizosphere. J. Appl. Bacteriol. 34: 261-275 https://doi.org/10.1111/j.1365-2672.1971.tb02285.x
- Smibert, R. M. and N. R. Krieg. 1994. Phenotypic characterization, pp. 607-654. In P. Gerhardt, R. G. E. Murray, W. A. Wood, and N. R. Krieg (eds.). Methods for General and Molecular Bacteriology. American Society of Microbiology, Washington, D.C
- Sunish Kumar, R., N. Ayyadurai, P. Pandiaraja, A. V. Reddy, Y. Venkateswarlu, O. Prakash, and N. Sakthivel. 2005. Characterization of antifungal metabolite produced by a new strain Pseudomonas aeruginosa PUPa3 that exhibits broad spectrum antifungal activity and biofertilizing traits. J. Appl. Microbiol. 98: 145-154 https://doi.org/10.1111/j.1365-2672.2004.02435.x
- Thomashow, L. S., D. M. Weller, R. F. Bonsall, and L. S. Pierson. 1990. Production of the antibiotic phenazine-1- carboxylic acid of fluorescent Pseudomonas species in the rhizosphere of wheat. Appl. Environ. Microbiol. 56: 908- 912
- Vancanneyt, M., S. Witt, W. R. Abraham, K. Kersters, and H. L. Fredrickson. 1996. Fatty acid content in whole-cell hydrolysates and phospholipids fractions of pseudomonads: A taxonomic evaluation. Syst. Appl. Microbiol. 19: 528- 540 https://doi.org/10.1016/S0723-2020(96)80025-7
- Van Loon, L. C., P. A. H. M. Bakker, and C. M. J. Pieterse. 1998. Systemic resistance induced by rhizosphere bacteria. Annu. Rev. Phytopathol. 36: 453-483 https://doi.org/10.1146/annurev.phyto.36.1.453
- Wang, A. Y. and J. J. E. Cronan. 1994. The growth phasedependent synthesis of cyclopropane fatty acids in Escherichia coli is the result of an rpoS (KatF)-dependent promoter plus enzyme instability. Mol. Microbiol. 11: 1009-1017 https://doi.org/10.1111/j.1365-2958.1994.tb00379.x
- Weisburg, W. G., S. M. Barns, and D. J. Lane. 1991. 16S ribosomal DNA amplification for phylogenetic study. J. Bacteriol. 173: 697-703 https://doi.org/10.1128/jb.173.2.697-703.1991