Iron Catalyzed Atom Transfer Radical Polymerization of Methyl Methacrylate Using Diphenyl-2-pyridylphosphine as a Ligand

  • Published : 2007.06.30

Abstract

The living radical polymerization of methyl methacrylate (MMA) by atom transfer radical polymerization, (ATRP) employing a $Fe(II)X_2/diphenyl-2-pyridyl$ phosphine (PyP) catalytic system (X=Cl, Br), was investigated using several initiators and solvents at various temperatures. Most of the polymerizations with the PyP ligand were well controlled, with a linear increase in the number average molecular weights ($M_n$) vs. conversion, with relatively low molecular weight distributions ($M_w/M_n=1.2-1.4$) throughout the reactions. The measured weights matched those of the predicted values. The ethyl-2-bromoisobutyrate (EBriB) initiated ATRP of MMA, with the $Fe(II)X_2/diphenyl-2-pyridyl$ phosphine catalytic system (X=Cl, Br), was better controlled in p-xylene at $80^{\circ}C$ than the other solvents used in this study.

Keywords

References

  1. T. E. Patten and K. Matyjaszewski, Acc. Chem. Res., 32, 895 (1999)
  2. T. E. Patten and K. Matyjaszewski, Adv. Mater., 10, 901 (1998)
  3. K. Matyjaszewski and J. H. Xia, Chem. Rev., 101, 2921 (2001) https://doi.org/10.1021/cr990410+
  4. Z. P. Cheng, X. L. Zhu, E. T. Kang, and K. G. Neoh, Langmuir, 21, 7180 (2005) https://doi.org/10.1021/la047584t
  5. R. Krishnan and K. S. V. Srinivasan, Macromolecules, 36, 1769 (2003)
  6. C. J. Hawker, A. W. Bosman, and E. Harth, Chem. Rev., 101, 3661 (2001) https://doi.org/10.1021/cr990410+
  7. K. Bian and M. F. Cunningham, Macromolecules, 38, 695 (2005)
  8. M. N. Nguyen, C. Bressy, and A. Margaillan, J. Polym. Sci.; Part A: Polym. Chem., 43, 5680 (2005)
  9. A. H. Gabor and C. K. Ober, Chem. Mater., 8, 2272 (1996)
  10. O. W. Webster, J. Polym. Sci.; Part A: Polym. Chem., 38, 2855 (2000)
  11. J. S. Wang and K. Matyjaszewski, J. Am. Chem. Soc., 117, 5614 (1995)
  12. Q. Yu, F. Q. Zeng, and S. P. Zhu, Macromolecules, 34, 1612 (2001) https://doi.org/10.1021/ma002404h
  13. H. Q. Zhang and R. Van der Linde, J. Polym. Sci.; Part A: Polym. Chem., 40, 3549 (2002)
  14. H. Q. Zhang and U. S. Schubert, J. Polym. Sci.; Part A: Polym. Chem., 42, 4882 (2004)
  15. K. Matyjaszewski, M. L. Wei, J. H. Xia, and N. E. Mcdermott, Macromolecules, 30, 8161 (1997)
  16. R. Krishnan and K. S. V. Srinivasan, Macromolecules, 37, 3614 (2004)
  17. J. L. Wang, T. Grimaud, D. A. Shipp, and K. Matyjaszewski, Macromolecules, 31, 1527 (1998)
  18. K. Matyjaszewski, J. S. Mu, H. J. Paik, and S. G. Gaynor, Macromolecules, 30, 6398 (1997)
  19. B. J. Moon and M. H. Kang, Macromol. Res., 13, 229 (2005)
  20. W. J. Xu, X. L. Zhu, Z. P. Cheng, J. Y. Chen, and J. M. Lu, Macromol. Res., 12, 32 (2004)
  21. S. C. Hong, K. E. Shin, S. K. Noh, and W. S. Lyoo, Macromol. Res., 13, 391 (2005)
  22. H. Y. Cho, B. H. Han, I. Kim, and H. J. Paik, Macromol. Res., 14, 539 (2006) https://doi.org/10.1007/BF03218721
  23. R. K. O'Reilly, V. C. Gibson, A. J. P White, and D. J. Williams, J. Am. Chem. Soc., 125, 8450 (2003)
  24. S. M. Zhu and D. Y. Yan, Macromolecules, 33, 8233 (2000)
  25. J. H. Xia and K. Matyjaszewski, Macromolecules, 30, 7697 (1997)
  26. K. Matyjaszewski, Macromol. Symp., 182, 209 (2002)
  27. A. K. Nanda and K. Matyjaszewski, Macromolecules, 36, 1487 (2003)
  28. H. Uegaki, Y. Kotani, M. Kamigaito, and M. Sawamoto, Macromolecules, 31, 6756 (1998)
  29. M. Reyes, X. Yu, and D. A. Shipp, Macromol. Chem. Phys., 202, 3268 (2001) https://doi.org/10.1002/1521-3935(20010101)202:1<1::AID-MACP1>3.0.CO;2-L
  30. J. L. De la Fuente, M. Fernández-Sanz, M. Fernández- García, and E. L. Madruga, Macromol. Chem. Phys., 202, 2565 (2001)
  31. K. Matyjaszewski, Y. Nakagawa, and C. B. Jasieczek, Macromolecules, 31, 1535 (1998)